[a18f15]: / algorithms / simclr.py

Download this file

169 lines (138 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import math
import torch
from torch import nn, optim
from algorithms.arch.resnet import loadResnetBackbone
import utilities.runUtils as rutl
def device_as(t1, t2):
"""
Moves t1 to the device of t2
"""
return t1.to(t2.device)
##==================== Model ===============================================
class ContrastiveLoss(nn.Module):
"""
Vanilla Contrastive loss, also called InfoNceLoss as in SimCLR paper
"""
def __init__(self, batch_size, temperature=0.5):
super().__init__()
self.batch_size = batch_size
self.temperature = temperature
self.mask = (~torch.eye(batch_size * 2, batch_size * 2, dtype=bool)).float()
def calc_similarity_batch(self, a, b):
representations = torch.cat([a, b], dim=0)
return nn.functional.cosine_similarity(representations.unsqueeze(1), representations.unsqueeze(0), dim=2)
def forward(self, proj_1, proj_2):
"""
proj_1 and proj_2 are batched embeddings [batch, embedding_dim]
where corresponding indices are pairs
z_i, z_j in the SimCLR paper
"""
batch_size = proj_1.shape[0]
z_i = nn.functional.normalize(proj_1, p=2, dim=1)
z_j = nn.functional.normalize(proj_2, p=2, dim=1)
similarity_matrix = self.calc_similarity_batch(z_i, z_j)
sim_ij = torch.diag(similarity_matrix, batch_size)
sim_ji = torch.diag(similarity_matrix, -batch_size)
positives = torch.cat([sim_ij, sim_ji], dim=0)
nominator = torch.exp(positives / self.temperature)
denominator = device_as(self.mask, similarity_matrix) * torch.exp(similarity_matrix / self.temperature)
all_losses = -torch.log(nominator / torch.sum(denominator, dim=1))
loss = torch.sum(all_losses) / (2 * self.batch_size)
return loss
class SimCLR(nn.Module):
def __init__(self, featx_arch, projector_sizes,
batch_size, temp, pretrained=None):
super().__init__()
rutl.START_SEED()
mlp_dim = projector_sizes[0]
embedding_size = projector_sizes[1]
self.batch_size = batch_size
self.temp = temp
self.backbone, outfeatx_size = loadResnetBackbone(arch=featx_arch,
torch_pretrain=pretrained)
# add mlp projection head
self.projector = nn.Sequential(
nn.Linear(in_features=outfeatx_size, out_features=mlp_dim),
nn.BatchNorm1d(mlp_dim),
nn.ReLU(),
nn.Linear(in_features=mlp_dim, out_features=embedding_size),
# nn.BatchNorm1d(embedding_size),
)
def forward(self, y1, y2):
z1 = self.projector(self.backbone(y1))
z2 = self.projector(self.backbone(y2))
loss = ContrastiveLoss(self.batch_size, self.temp)
return loss(z1, z2)
##==================== OPTIMISER ===============================================
class LARS(optim.Optimizer):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
trust_coefficient=0.001,
eps=1e-8,
):
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
trust_coefficient=trust_coefficient,
eps=eps,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
# exclude scaling for params with 0 weight decay
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
for p in group["params"]:
if p.grad is None:
continue
d_p = p.grad
p_norm = torch.norm(p.data)
g_norm = torch.norm(p.grad.data)
# lars scaling + weight decay part
if weight_decay != 0:
if p_norm != 0 and g_norm != 0:
lars_lr = p_norm / (g_norm + p_norm * weight_decay + group["eps"])
lars_lr *= group["trust_coefficient"]
d_p = d_p.add(p, alpha=weight_decay)
d_p *= lars_lr
# sgd part
if momentum != 0:
param_state = self.state[p]
if "momentum_buffer" not in param_state:
buf = param_state["momentum_buffer"] = torch.clone(d_p).detach()
else:
buf = param_state["momentum_buffer"]
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(buf, alpha=momentum)
else:
d_p = buf
p.add_(d_p, alpha=-group["lr"])
return loss