|
a |
|
b/algorithms/classifiers.py |
|
|
1 |
import os, sys |
|
|
2 |
import torch |
|
|
3 |
import torchvision |
|
|
4 |
from torch import nn |
|
|
5 |
|
|
|
6 |
sys.path.append(os.getcwd()) |
|
|
7 |
from algorithms.arch.resnet import loadResnetBackbone |
|
|
8 |
import utilities.runUtils as rutl |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
##================= CLassifier Wrapper ========================================= |
|
|
12 |
|
|
|
13 |
class ClassifierNet(nn.Module): |
|
|
14 |
def __init__(self, arch, fc_layer_sizes=[512,1000], |
|
|
15 |
feature_dropout=0, classifier_dropout=0, |
|
|
16 |
feature_freeze = False, feature_bnorm = False, |
|
|
17 |
torch_pretrain=None): |
|
|
18 |
super().__init__() |
|
|
19 |
rutl.START_SEED(7) |
|
|
20 |
|
|
|
21 |
self.fc_layer_sizes = fc_layer_sizes |
|
|
22 |
|
|
|
23 |
# Feature Extractor |
|
|
24 |
self.backbone,self.feat_outsize = loadResnetBackbone(arch=arch, |
|
|
25 |
torch_pretrain=torch_pretrain, |
|
|
26 |
freeze=feature_freeze) |
|
|
27 |
fx_layers = [] |
|
|
28 |
if feature_bnorm: |
|
|
29 |
fx_layers.append(nn.BatchNorm1d(self.feat_outsize, affine=False)) |
|
|
30 |
fx_layers.append(nn.Dropout(p=feature_dropout)) |
|
|
31 |
|
|
|
32 |
self.featx_proc = nn.Sequential(*fx_layers) |
|
|
33 |
|
|
|
34 |
# Classifier |
|
|
35 |
sizes = [self.feat_outsize] + list(self.fc_layer_sizes) |
|
|
36 |
layers = [] |
|
|
37 |
for i in range(len(sizes) - 2): |
|
|
38 |
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False)) |
|
|
39 |
layers.append(nn.LayerNorm(sizes[i + 1])) |
|
|
40 |
layers.append(nn.ReLU(inplace=True)) |
|
|
41 |
layers.append(nn.Dropout(p=classifier_dropout)) |
|
|
42 |
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False)) |
|
|
43 |
|
|
|
44 |
self.classifier = nn.Sequential(*layers) |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
def forward(self, x): |
|
|
48 |
x = self.backbone(x) |
|
|
49 |
x = self.featx_proc(x) |
|
|
50 |
out = self.classifier(x) |
|
|
51 |
|
|
|
52 |
return out |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
if __name__ == "__main__": |
|
|
57 |
|
|
|
58 |
from torchinfo import summary |
|
|
59 |
|
|
|
60 |
model = ClassifierNet(arch='efficientnet_b0', fc_layer_sizes=[64,8], |
|
|
61 |
feature_dropout=0, classifier_dropout=0, |
|
|
62 |
torch_pretrain=None) |
|
|
63 |
summary(model, (1, 3, 200, 200)) |
|
|
64 |
print(model) |