|
a |
|
b/algorithms/byol.py |
|
|
1 |
import torch |
|
|
2 |
import copy |
|
|
3 |
from torch import nn, optim |
|
|
4 |
from typing import List, Optional, Tuple, Union |
|
|
5 |
|
|
|
6 |
from algorithms.arch.resnet import loadResnetBackbone |
|
|
7 |
import utilities.runUtils as rutl |
|
|
8 |
|
|
|
9 |
def device_as(t1, t2): |
|
|
10 |
""" |
|
|
11 |
Moves t1 to the device of t2 |
|
|
12 |
""" |
|
|
13 |
return t1.to(t2.device) |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
##==================== Model =============================================== |
|
|
17 |
|
|
|
18 |
class ProjectionHead(nn.Module): |
|
|
19 |
"""Base class for all projection and prediction heads. |
|
|
20 |
Args: |
|
|
21 |
blocks: |
|
|
22 |
List of tuples, each denoting one block of the projection head MLP. |
|
|
23 |
Each tuple reads (in_features, out_features, batch_norm_layer, |
|
|
24 |
non_linearity_layer). |
|
|
25 |
Examples: |
|
|
26 |
>>> # the following projection head has two blocks |
|
|
27 |
>>> # the first block uses batch norm an a ReLU non-linearity |
|
|
28 |
>>> # the second block is a simple linear layer |
|
|
29 |
>>> projection_head = ProjectionHead([ |
|
|
30 |
>>> (256, 256, nn.BatchNorm1d(256), nn.ReLU()), |
|
|
31 |
>>> (256, 128, None, None) |
|
|
32 |
>>> ]) |
|
|
33 |
""" |
|
|
34 |
|
|
|
35 |
def __init__( |
|
|
36 |
self, blocks: List[Tuple[int, int, Optional[nn.Module], Optional[nn.Module]]] |
|
|
37 |
): |
|
|
38 |
super(ProjectionHead, self).__init__() |
|
|
39 |
|
|
|
40 |
layers = [] |
|
|
41 |
for input_dim, output_dim, batch_norm, non_linearity in blocks: |
|
|
42 |
use_bias = not bool(batch_norm) |
|
|
43 |
layers.append(nn.Linear(input_dim, output_dim, bias=use_bias)) |
|
|
44 |
if batch_norm: |
|
|
45 |
layers.append(batch_norm) |
|
|
46 |
if non_linearity: |
|
|
47 |
layers.append(non_linearity) |
|
|
48 |
self.layers = nn.Sequential(*layers) |
|
|
49 |
|
|
|
50 |
def forward(self, x: torch.Tensor): |
|
|
51 |
"""Computes one forward pass through the projection head. |
|
|
52 |
Args: |
|
|
53 |
x: |
|
|
54 |
Input of shape bsz x num_ftrs. |
|
|
55 |
""" |
|
|
56 |
return self.layers(x) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
class BYOLProjectionHead(ProjectionHead): |
|
|
60 |
"""Projection head used for BYOL. |
|
|
61 |
"This MLP consists in a linear layer with output size 4096 followed by |
|
|
62 |
batch normalization, rectified linear units (ReLU), and a final |
|
|
63 |
linear layer with output dimension 256." [0] |
|
|
64 |
[0]: BYOL, 2020, https://arxiv.org/abs/2006.07733 |
|
|
65 |
""" |
|
|
66 |
|
|
|
67 |
def __init__( |
|
|
68 |
self, input_dim: int = 2048, hidden_dim: int = 4096, output_dim: int = 256 |
|
|
69 |
): |
|
|
70 |
super(BYOLProjectionHead, self).__init__( |
|
|
71 |
[ |
|
|
72 |
(input_dim, hidden_dim, nn.BatchNorm1d(hidden_dim), nn.ReLU()), |
|
|
73 |
(hidden_dim, output_dim, None, None), |
|
|
74 |
] |
|
|
75 |
) |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
class BYOLPredictionHead(ProjectionHead): |
|
|
79 |
"""Prediction head used for BYOL. |
|
|
80 |
"This MLP consists in a linear layer with output size 4096 followed by |
|
|
81 |
batch normalization, rectified linear units (ReLU), and a final |
|
|
82 |
linear layer with output dimension 256." [0] |
|
|
83 |
[0]: BYOL, 2020, https://arxiv.org/abs/2006.07733 |
|
|
84 |
""" |
|
|
85 |
|
|
|
86 |
def __init__( |
|
|
87 |
self, input_dim: int = 256, hidden_dim: int = 4096, output_dim: int = 256 |
|
|
88 |
): |
|
|
89 |
super(BYOLPredictionHead, self).__init__( |
|
|
90 |
[ |
|
|
91 |
(input_dim, hidden_dim, nn.BatchNorm1d(hidden_dim), nn.ReLU()), |
|
|
92 |
(hidden_dim, output_dim, None, None), |
|
|
93 |
] |
|
|
94 |
) |
|
|
95 |
|
|
|
96 |
def deactivate_requires_grad(model: nn.Module): |
|
|
97 |
"""Deactivates the requires_grad flag for all parameters of a model. |
|
|
98 |
This has the same effect as permanently executing the model within a `torch.no_grad()` |
|
|
99 |
context. Use this method to disable gradient computation and therefore |
|
|
100 |
training for a model. |
|
|
101 |
Examples: |
|
|
102 |
>>> backbone = resnet18() |
|
|
103 |
>>> deactivate_requires_grad(backbone) |
|
|
104 |
""" |
|
|
105 |
for param in model.parameters(): |
|
|
106 |
param.requires_grad = False |
|
|
107 |
|
|
|
108 |
class BYOL(nn.Module): |
|
|
109 |
def __init__(self, featx_arch, pretrained=None, backbone=None): |
|
|
110 |
super().__init__() |
|
|
111 |
|
|
|
112 |
if backbone is not None: |
|
|
113 |
self.backbone = backbone |
|
|
114 |
else: |
|
|
115 |
self.backbone, outfeatx_size = loadResnetBackbone(arch=featx_arch, |
|
|
116 |
torch_pretrain=pretrained) |
|
|
117 |
self.projection_head = BYOLProjectionHead(outfeatx_size, 1024, 256) |
|
|
118 |
self.prediction_head = BYOLPredictionHead(256, 1024, 256) |
|
|
119 |
|
|
|
120 |
self.backbone_momentum = copy.deepcopy(self.backbone) |
|
|
121 |
self.projection_head_momentum = copy.deepcopy(self.projection_head) |
|
|
122 |
|
|
|
123 |
deactivate_requires_grad(self.backbone_momentum) |
|
|
124 |
deactivate_requires_grad(self.projection_head_momentum) |
|
|
125 |
|
|
|
126 |
def forward(self, x): |
|
|
127 |
y = self.backbone(x).flatten(start_dim=1) |
|
|
128 |
z = self.projection_head(y) |
|
|
129 |
p = self.prediction_head(z) |
|
|
130 |
return p |
|
|
131 |
|
|
|
132 |
def forward_momentum(self, x): |
|
|
133 |
y = self.backbone_momentum(x).flatten(start_dim=1) |
|
|
134 |
z = self.projection_head_momentum(y) |
|
|
135 |
z = z.detach() |
|
|
136 |
return z |