Switch to unified view

a b/algorithms/arch/convnext.py
1
2
3
import os, sys, time
4
5
import torch
6
import torch.nn as nn
7
import torch.nn.functional as F
8
from timm.models.layers import trunc_normal_, DropPath
9
from timm.models.registry import register_model
10
11
sys.path.append(os.getcwd())
12
import utilities.runUtils as rutl
13
14
##------------------------------------------------------------------------------
15
# ConvNext Taken From: https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
16
17
class Block(nn.Module):
18
    r""" ConvNeXt Block. There are two equivalent implementations:
19
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
20
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
21
    We use (2) as we find it slightly faster in PyTorch
22
23
    Args:
24
        dim (int): Number of input channels.
25
        drop_path (float): Stochastic depth rate. Default: 0.0
26
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
27
    """
28
    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
29
        super().__init__()
30
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
31
        self.norm = LayerNorm(dim, eps=1e-6)
32
        self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
33
        self.act = nn.GELU()
34
        self.pwconv2 = nn.Linear(4 * dim, dim)
35
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
36
                                    requires_grad=True) if layer_scale_init_value > 0 else None
37
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
38
39
    def forward(self, x):
40
        input = x
41
        x = self.dwconv(x)
42
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
43
        x = self.norm(x)
44
        x = self.pwconv1(x)
45
        x = self.act(x)
46
        x = self.pwconv2(x)
47
        if self.gamma is not None:
48
            x = self.gamma * x
49
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
50
51
        x = input + self.drop_path(x)
52
        return x
53
54
class ConvNeXt(nn.Module):
55
    r""" ConvNeXt
56
        A PyTorch impl of : `A ConvNet for the 2020s`  -
57
          https://arxiv.org/pdf/2201.03545.pdf
58
    Args:
59
        in_chans (int): Number of input image channels. Default: 3
60
        num_classes (int): Number of classes for classification head. Default: 1000
61
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
62
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
63
        drop_path_rate (float): Stochastic depth rate. Default: 0.
64
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
65
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
66
    """
67
    def __init__(self, in_chans=3, num_classes=1000,
68
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.,
69
                 layer_scale_init_value=1e-6, head_init_scale=1.,
70
                 ):
71
        super().__init__()
72
73
        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
74
        stem = nn.Sequential(
75
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
76
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
77
        )
78
        self.downsample_layers.append(stem)
79
        for i in range(3):
80
            downsample_layer = nn.Sequential(
81
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
82
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
83
            )
84
            self.downsample_layers.append(downsample_layer)
85
86
        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
87
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
88
        cur = 0
89
        for i in range(4):
90
            stage = nn.Sequential(
91
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j],
92
                layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
93
            )
94
            self.stages.append(stage)
95
            cur += depths[i]
96
97
        self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
98
        self.head = nn.Linear(dims[-1], num_classes)
99
100
        self.apply(self._init_weights)
101
        self.head.weight.data.mul_(head_init_scale)
102
        self.head.bias.data.mul_(head_init_scale)
103
104
    def _init_weights(self, m):
105
        if isinstance(m, (nn.Conv2d, nn.Linear)):
106
            trunc_normal_(m.weight, std=.02)
107
            nn.init.constant_(m.bias, 0)
108
109
    def forward_features(self, x):
110
        for i in range(4):
111
            x = self.downsample_layers[i](x)
112
            x = self.stages[i](x)
113
        return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
114
115
    def forward(self, x):
116
        x = self.forward_features(x)
117
        x = self.head(x)
118
        return x
119
120
class LayerNorm(nn.Module):
121
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
122
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
123
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
124
    with shape (batch_size, channels, height, width).
125
    """
126
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
127
        super().__init__()
128
        self.weight = nn.Parameter(torch.ones(normalized_shape))
129
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
130
        self.eps = eps
131
        self.data_format = data_format
132
        if self.data_format not in ["channels_last", "channels_first"]:
133
            raise NotImplementedError
134
        self.normalized_shape = (normalized_shape, )
135
136
    def forward(self, x):
137
        if self.data_format == "channels_last":
138
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
139
        elif self.data_format == "channels_first":
140
            u = x.mean(1, keepdim=True)
141
            s = (x - u).pow(2).mean(1, keepdim=True)
142
            x = (x - u) / torch.sqrt(s + self.eps)
143
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
144
            return x
145
146
147
model_urls = {
148
    "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
149
    "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
150
    "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
151
    "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
152
    "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
153
    "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
154
    "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
155
    "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
156
    "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
157
}
158
159
@register_model
160
def convnext_tiny(pretrained=False,in_22k=False, **kwargs):
161
    model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
162
    if pretrained:
163
        url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k']
164
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
165
        model.load_state_dict(checkpoint["model"])
166
    return model
167
168
@register_model
169
def convnext_small(pretrained=False,in_22k=False, **kwargs):
170
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
171
    if pretrained:
172
        url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k']
173
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
174
        model.load_state_dict(checkpoint["model"])
175
    return model
176
177
@register_model
178
def convnext_base(pretrained=False, in_22k=False, **kwargs):
179
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
180
    if pretrained:
181
        url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k']
182
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
183
        model.load_state_dict(checkpoint["model"])
184
    return model
185
186
@register_model
187
def convnext_large(pretrained=False, in_22k=False, **kwargs):
188
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
189
    if pretrained:
190
        url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k']
191
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
192
        model.load_state_dict(checkpoint["model"])
193
    return model
194
195
@register_model
196
def convnext_xlarge(pretrained=False, in_22k=False, **kwargs):
197
    model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
198
    if pretrained:
199
        assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
200
        url = model_urls['convnext_xlarge_22k']
201
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
202
        model.load_state_dict(checkpoint["model"])
203
    return model
204
205
206
##==================== Task Specific Class======================================
207
208
class ClassifierNet(nn.Module):
209
    def __init__(self, args):
210
        super().__init__()
211
        rutl.START_SEED()
212
213
        self.args = args
214
215
        # Feature Extractor
216
        self.backbone, self.feat_outsize = self._load_convnext_backbone()
217
        self.feat_dropout = nn.Dropout(p=self.args.featx_dropout)
218
219
        # Classifier
220
        sizes = [self.feat_outsize] + list(args.classifier)
221
        layers = []
222
        for i in range(len(sizes) - 2):
223
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
224
            layers.append(nn.LayerNorm(sizes[i + 1]))  #watchout this is LayerNorm
225
            layers.append(nn.ReLU(inplace=True))
226
            layers.append(nn.Dropout(p=self.args.clsfy_dropout))
227
        layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
228
229
        self.classifier = nn.Sequential(*layers)
230
231
232
    def forward(self, x):
233
        x = self.backbone(x)
234
        x = self.feat_dropout(x)
235
        out = self.classifier(x)
236
237
        return out
238
239
240
    def _load_convnext_backbone(self):
241
242
        ## pretrain setting
243
        pretrain = False; imgnet22k = False
244
        head_default = None
245
        if self.args.featx_pretrain in ["DEFAULT", "IMAGENET-1K"]:
246
            pretrain = True
247
            head_default = 1000
248
        elif self.args.featx_pretrain == "IMAGENET-22K":
249
            pretrain = True; imgnet22k = True
250
            head_default = 21841
251
        elif self.args.featx_pretrain not in [None, "NONE", "none"]:
252
            raise ValueError(f"Unknown pretrain weight type requested {self.args.featx_pretrain}" )
253
254
        ## Model loading
255
        if self.args.feature_extract == 'convnext-tiny':
256
            backbone = convnext_tiny(pretrained=pretrain, in_22k=imgnet22k,
257
                                        num_classes = head_default)
258
            outfeat_size = 768
259
        elif self.args.feature_extract == 'convnext-small':
260
            backbone = convnext_small(pretrained=pretrain, in_22k=imgnet22k,
261
                                        num_classes = head_default)
262
            outfeat_size = 768
263
264
        elif self.args.feature_extract == 'convnext-base':
265
            backbone = convnext_base(pretrained=pretrain, in_22k=imgnet22k,
266
                                        num_classes = head_default)
267
            outfeat_size = 1024
268
269
        elif self.args.feature_extract == 'convnext-large':
270
            backbone = convnext_large(pretrained=pretrain, in_22k=imgnet22k,
271
                                        num_classes = head_default)
272
            outfeat_size = 1536
273
274
        else:
275
            raise ValueError(f"Unknown Model Implementation called in {os.path.basename(__file__)}")
276
277
        backbone.head = nn.Identity() #remove fc of default arc
278
279
        # pretrain from external file
280
        if os.path.exists(self.args.featx_pretrain):
281
            backbone = self._load_weights_from_file(backbone,
282
                                self.args.featx_pretrain )
283
            print("Loaded:", self.args.featx_pretrain )
284
285
        return backbone, outfeat_size
286
287
288
289
290
291
if __name__ == "__main__":
292
293
    from torchsummary import summary
294
295
    model = convnext_large()
296
    summary(model, (3, 224, 224))