--- a +++ b/scripts/commands/predict.py @@ -0,0 +1,77 @@ +""" +If you use this code, please cite one of the SynthSeg papers: +https://github.com/BBillot/SynthSeg/blob/master/bibtex.bib + +Copyright 2020 Benjamin Billot + +Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in +compliance with the License. You may obtain a copy of the License at +https://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software distributed under the License is +distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or +implied. See the License for the specific language governing permissions and limitations under the +License. +""" + + +# imports +from argparse import ArgumentParser +from SynthSeg.predict import predict + +parser = ArgumentParser() + +# Positional arguments +parser.add_argument("path_images", type=str, help="path single image or path of the folders with training labels") +parser.add_argument("path_segmentations", type=str, help="segmentations folder/path") +parser.add_argument("path_model", type=str, help="model file path") + +# labels parameters +parser.add_argument("labels_segmentation", type=str, help="path label list") +parser.add_argument("--neutral_labels", type=int, dest="n_neutral_labels", default=None) +parser.add_argument("--names_list", type=str, dest="names_segmentation", default=None, + help="path list of label names, only used if --vol is specified") + +# Saving paths +parser.add_argument("--post", type=str, dest="path_posteriors", default=None, help="posteriors folder/path") +parser.add_argument("--resampled", type=str, dest="path_resampled", default=None, + help="path/folder of the images resampled at the given target resolution") +parser.add_argument("--vol", type=str, dest="path_volumes", default=None, help="path volume file") + +# Processing parameters +parser.add_argument("--min_pad", type=int, dest="min_pad", default=None, + help="margin of the padding") +parser.add_argument("--cropping", type=int, dest="cropping", default=None, + help="crop volume before processing. Segmentations will have the same size as input image.") +parser.add_argument("--target_res", type=float, dest="target_res", default=1., + help="Target resolution at which segmentations will be given.") +parser.add_argument("--flip", action='store_true', dest="flip", + help="to activate test-time augmentation (right/left flipping)") +parser.add_argument("--topology_classes", type=str, dest="topology_classes", default=None, + help="path list of classes, for topologically enhanced biggest connected component analysis") +parser.add_argument("--smoothing", type=float, dest="sigma_smoothing", default=0.5, + help="var for gaussian blurring of the posteriors") +parser.add_argument("--biggest_component", action='store_true', dest="keep_biggest_component", + help="only keep biggest component in segmentation (recommended)") + +# Architecture parameters +parser.add_argument("--conv_size", type=int, dest="conv_size", default=3, help="size of unet convolution masks") +parser.add_argument("--n_levels", type=int, dest="n_levels", default=5, help="number of levels for unet") +parser.add_argument("--conv_per_level", type=int, dest="nb_conv_per_level", default=2, help="conv par level") +parser.add_argument("--unet_feat", type=int, dest="unet_feat_count", default=24, + help="number of features of unet first layer") +parser.add_argument("--feat_mult", type=int, dest="feat_multiplier", default=2, + help="factor of new feature maps per level") +parser.add_argument("--activation", type=str, dest="activation", default='elu', help="activation function") + +# Evaluation parameters +parser.add_argument("--gt", type=str, default=None, dest="gt_folder", + help="folder containing ground truth segmentations, which triggers the evaluation.") +parser.add_argument("--eval_label_list", type=str, dest="evaluation_labels", default=None, + help="labels to evaluate Dice scores on if gt is provided. Default is the same as label_list.") +parser.add_argument("--incorrect_labels", type=str, default=None, dest="list_incorrect_labels", + help="path list labels to correct.") +parser.add_argument("--correct_labels", type=str, default=None, dest="list_correct_labels", + help="path list correct labels.") + +args = parser.parse_args() +predict(**vars(args))