[e571d1]: / ext / neuron / utils.py

Download this file

549 lines (414 with data), 19.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"""
tensorflow/keras utilities for the neuron project
If you use this code, please cite
Dalca AV, Guttag J, Sabuncu MR
Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation,
CVPR 2018
or for the transformation/interpolation related functions:
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration
Adrian V. Dalca, Guha Balakrishnan, John Guttag, Mert R. Sabuncu
MICCAI 2018.
Contact: adalca [at] csail [dot] mit [dot] edu
License: GPLv3
"""
import itertools
import numpy as np
import tensorflow as tf
import keras.backend as K
def interpn(vol, loc, interp_method='linear'):
"""
N-D gridded interpolation in tensorflow
vol can have more dimensions than loc[i], in which case loc[i] acts as a slice
for the first dimensions
Parameters:
vol: volume with size vol_shape or [*vol_shape, nb_features]
loc: an N-long list of N-D Tensors (the interpolation locations) for the new grid
each tensor has to have the same size (but not nec. same size as vol)
or a tensor of size [*new_vol_shape, D]
interp_method: interpolation type 'linear' (default) or 'nearest'
Returns:
new interpolated volume of the same size as the entries in loc
"""
if isinstance(loc, (list, tuple)):
loc = tf.stack(loc, -1)
nb_dims = loc.shape[-1]
if len(vol.shape) not in [nb_dims, nb_dims + 1]:
raise Exception("Number of loc Tensors %d does not match volume dimension %d"
% (nb_dims, len(vol.shape[:-1])))
if nb_dims > len(vol.shape):
raise Exception("Loc dimension %d does not match volume dimension %d"
% (nb_dims, len(vol.shape)))
if len(vol.shape) == nb_dims:
vol = K.expand_dims(vol, -1)
# flatten and float location Tensors
loc = tf.cast(loc, 'float32')
if isinstance(vol.shape, tf.TensorShape):
volshape = vol.shape.as_list()
else:
volshape = vol.shape
# interpolate
if interp_method == 'linear':
loc0 = tf.floor(loc)
# clip values
max_loc = [d - 1 for d in vol.get_shape().as_list()]
clipped_loc = [tf.clip_by_value(loc[..., d], 0, max_loc[d]) for d in range(nb_dims)]
loc0lst = [tf.clip_by_value(loc0[..., d], 0, max_loc[d]) for d in range(nb_dims)]
# get other end of point cube
loc1 = [tf.clip_by_value(loc0lst[d] + 1, 0, max_loc[d]) for d in range(nb_dims)]
locs = [[tf.cast(f, 'int32') for f in loc0lst], [tf.cast(f, 'int32') for f in loc1]]
# compute the difference between the upper value and the original value
# differences are basically 1 - (pt - floor(pt))
# because: floor(pt) + 1 - pt = 1 + (floor(pt) - pt) = 1 - (pt - floor(pt))
diff_loc1 = [loc1[d] - clipped_loc[d] for d in range(nb_dims)]
diff_loc0 = [1 - d for d in diff_loc1]
weights_loc = [diff_loc1, diff_loc0] # note reverse ordering since weights are inverse of diff.
# go through all the cube corners, indexed by a ND binary vector
# e.g. [0, 0] means this "first" corner in a 2-D "cube"
cube_pts = list(itertools.product([0, 1], repeat=nb_dims))
interp_vol = 0
for c in cube_pts:
# get nd values
# note re: indices above volumes via https://github.com/tensorflow/tensorflow/issues/15091
# It works on GPU because we do not perform index validation checking on GPU -- it's too
# expensive. Instead we fill the output with zero for the corresponding value. The CPU
# version caught the bad index and returned the appropriate error.
subs = [locs[c[d]][d] for d in range(nb_dims)]
idx = sub2ind(vol.shape[:-1], subs)
vol_val = tf.gather(tf.reshape(vol, [-1, volshape[-1]]), idx)
# get the weight of this cube_pt based on the distance
# if c[d] is 0 --> want weight = 1 - (pt - floor[pt]) = diff_loc1
# if c[d] is 1 --> want weight = pt - floor[pt] = diff_loc0
wts_lst = [weights_loc[c[d]][d] for d in range(nb_dims)]
wt = prod_n(wts_lst)
wt = K.expand_dims(wt, -1)
# compute final weighted value for each cube corner
interp_vol += wt * vol_val
else:
assert interp_method == 'nearest'
roundloc = tf.cast(tf.round(loc), 'int32')
# clip values
max_loc = [tf.cast(d - 1, 'int32') for d in vol.shape]
roundloc = [tf.clip_by_value(roundloc[..., d], 0, max_loc[d]) for d in range(nb_dims)]
# get values
idx = sub2ind(vol.shape[:-1], roundloc)
interp_vol = tf.gather(tf.reshape(vol, [-1, vol.shape[-1]]), idx)
return interp_vol
def resize(vol, zoom_factor, new_shape, interp_method='linear'):
"""
if zoom_factor is a list, it will determine the ndims, in which case vol has to be of length ndims or ndims + 1
if zoom_factor is an integer, then vol must be of length ndims + 1
new_shape should be a list of length ndims
"""
if isinstance(zoom_factor, (list, tuple)):
ndims = len(zoom_factor)
vol_shape = vol.shape[:ndims]
assert len(vol_shape) in (ndims, ndims + 1), \
"zoom_factor length %d does not match ndims %d" % (len(vol_shape), ndims)
else:
vol_shape = vol.shape[:-1]
ndims = len(vol_shape)
zoom_factor = [zoom_factor] * ndims
# get grid for new shape
grid = volshape_to_ndgrid(new_shape)
grid = [tf.cast(f, 'float32') for f in grid]
offset = [grid[f] / zoom_factor[f] - grid[f] for f in range(ndims)]
offset = tf.stack(offset, ndims)
# transform
return transform(vol, offset, interp_method)
zoom = resize
def affine_to_shift(affine_matrix, volshape, shift_center=True, indexing='ij'):
"""
transform an affine matrix to a dense location shift tensor in tensorflow
Algorithm:
- get grid and shift grid to be centered at the center of the image (optionally)
- apply affine matrix to each index.
- subtract grid
Parameters:
affine_matrix: ND+1 x ND+1 or ND x ND+1 matrix (Tensor)
volshape: 1xN Nd Tensor of the size of the volume.
shift_center (optional)
indexing
Returns:
shift field (Tensor) of size *volshape x N
"""
if isinstance(volshape, tf.TensorShape):
volshape = volshape.as_list()
if affine_matrix.dtype != 'float32':
affine_matrix = tf.cast(affine_matrix, 'float32')
nb_dims = len(volshape)
if len(affine_matrix.shape) == 1:
if len(affine_matrix) != (nb_dims * (nb_dims + 1)):
raise ValueError('transform is supposed a vector of len ndims * (ndims + 1).'
'Got len %d' % len(affine_matrix))
affine_matrix = tf.reshape(affine_matrix, [nb_dims, nb_dims + 1])
if not (affine_matrix.shape[0] in [nb_dims, nb_dims + 1] and affine_matrix.shape[1] == (nb_dims + 1)):
raise Exception('Affine matrix shape should match'
'%d+1 x %d+1 or ' % (nb_dims, nb_dims) +
'%d x %d+1.' % (nb_dims, nb_dims) +
'Got: ' + str(volshape))
# list of volume ndgrid
# N-long list, each entry of shape volshape
mesh = volshape_to_meshgrid(volshape, indexing=indexing)
mesh = [tf.cast(f, 'float32') for f in mesh]
if shift_center:
mesh = [mesh[f] - (volshape[f] - 1) / 2 for f in range(len(volshape))]
# add an all-ones entry and transform into a large matrix
flat_mesh = [flatten(f) for f in mesh]
flat_mesh.append(tf.ones(flat_mesh[0].shape, dtype='float32'))
mesh_matrix = tf.transpose(tf.stack(flat_mesh, axis=1)) # 4 x nb_voxels
# compute locations
loc_matrix = tf.matmul(affine_matrix, mesh_matrix) # N+1 x nb_voxels
loc_matrix = tf.transpose(loc_matrix[:nb_dims, :]) # nb_voxels x N
loc = tf.reshape(loc_matrix, list(volshape) + [nb_dims]) # *volshape x N
# get shifts and return
return loc - tf.stack(mesh, axis=nb_dims)
def combine_non_linear_and_aff_to_shift(transform_list, volshape, shift_center=True, indexing='ij'):
"""
transform an affine matrix to a dense location shift tensor in tensorflow
Algorithm:
- get grid and shift grid to be centered at the center of the image (optionally)
- apply affine matrix to each index.
- subtract grid
Parameters:
transform_list: list of non-linear tensor (size of volshape) and affine ND+1 x ND+1 or ND x ND+1 tensor
volshape: 1xN Nd Tensor of the size of the volume.
shift_center (optional)
indexing
Returns:
shift field (Tensor) of size *volshape x N
"""
if isinstance(volshape, tf.TensorShape):
volshape = volshape.as_list()
# convert transforms to floats
for i in range(len(transform_list)):
if transform_list[i].dtype != 'float32':
transform_list[i] = tf.cast(transform_list[i], 'float32')
nb_dims = len(volshape)
# transform affine to matrix if given as vector
if len(transform_list[1].shape) == 1:
if len(transform_list[1]) != (nb_dims * (nb_dims + 1)):
raise ValueError('transform is supposed a vector of len ndims * (ndims + 1).'
'Got len %d' % len(transform_list[1]))
transform_list[1] = tf.reshape(transform_list[1], [nb_dims, nb_dims + 1])
if not (transform_list[1].shape[0] in [nb_dims, nb_dims + 1] and transform_list[1].shape[1] == (nb_dims + 1)):
raise Exception('Affine matrix shape should match'
'%d+1 x %d+1 or ' % (nb_dims, nb_dims) +
'%d x %d+1.' % (nb_dims, nb_dims) +
'Got: ' + str(volshape))
# list of volume ndgrid
# N-long list, each entry of shape volshape
mesh = volshape_to_meshgrid(volshape, indexing=indexing)
mesh = [tf.cast(f, 'float32') for f in mesh]
if shift_center:
mesh = [mesh[f] - (volshape[f] - 1) / 2 for f in range(len(volshape))]
# add an all-ones entry and transform into a large matrix
# non_linear_mesh = tf.unstack(transform_list[0], axis=3)
non_linear_mesh = tf.unstack(transform_list[0], axis=-1)
flat_mesh = [flatten(mesh[i]+non_linear_mesh[i]) for i in range(len(mesh))]
flat_mesh.append(tf.ones(flat_mesh[0].shape, dtype='float32'))
mesh_matrix = tf.transpose(tf.stack(flat_mesh, axis=1)) # N+1 x nb_voxels
# compute locations
loc_matrix = tf.matmul(transform_list[1], mesh_matrix) # N+1 x nb_voxels
loc_matrix = tf.transpose(loc_matrix[:nb_dims, :]) # nb_voxels x N
loc = tf.reshape(loc_matrix, list(volshape) + [nb_dims]) # *volshape x N
# get shifts and return
return loc - tf.stack(mesh, axis=nb_dims)
def transform(vol, loc_shift, interp_method='linear', indexing='ij'):
"""
transform interpolation N-D volumes (features) given shifts at each location in tensorflow
Essentially interpolates volume vol at locations determined by loc_shift.
This is a spatial transform in the sense that at location [x] we now have the data from,
[x + shift] so we've moved data.
Parameters:
vol: volume with size vol_shape or [*vol_shape, nb_features]
loc_shift: shift volume [*new_vol_shape, N]
interp_method (default:'linear'): 'linear', 'nearest'
indexing (default: 'ij'): 'ij' (matrix) or 'xy' (cartesian).
In general, prefer to leave this 'ij'
Return:
new interpolated volumes in the same size as loc_shift[0]
"""
# parse shapes
if isinstance(loc_shift.shape, tf.TensorShape):
volshape = loc_shift.shape[:-1].as_list()
else:
volshape = loc_shift.shape[:-1]
nb_dims = len(volshape)
# location should be meshed and delta
mesh = volshape_to_meshgrid(volshape, indexing=indexing) # volume mesh
loc = [tf.cast(mesh[d], 'float32') + loc_shift[..., d] for d in range(nb_dims)]
# test single
return interpn(vol, loc, interp_method=interp_method)
def integrate_vec(vec, time_dep=False, method='ss', **kwargs):
"""
Integrate (stationary of time-dependent) vector field (N-D Tensor) in tensorflow
Aside from directly using tensorflow's numerical integration odeint(), also implements
"scaling and squaring", and quadrature. Note that the diff. equation given to odeint
is the one used in quadrature.
Parameters:
vec: the Tensor field to integrate.
If vol_size is the size of the intrinsic volume, and vol_ndim = len(vol_size),
then vector shape (vec_shape) should be
[vol_size, vol_ndim] (if stationary)
[vol_size, vol_ndim, nb_time_steps] (if time dependent)
time_dep: bool whether vector is time dependent
method: 'scaling_and_squaring' or 'ss' or 'quadrature'
if using 'scaling_and_squaring': currently only supports integrating to time point 1.
nb_steps int number of steps. Note that this means the vec field gets broken own to 2**nb_steps.
so nb_steps of 0 means integral = vec.
Returns:
int_vec: integral of vector field with same shape as the input
"""
if method not in ['ss', 'scaling_and_squaring', 'ode', 'quadrature']:
raise ValueError("method has to be 'scaling_and_squaring' or 'ode'. found: %s" % method)
if method in ['ss', 'scaling_and_squaring']:
nb_steps = kwargs['nb_steps']
assert nb_steps >= 0, 'nb_steps should be >= 0, found: %d' % nb_steps
if time_dep:
svec = K.permute_dimensions(vec, [-1, *range(0, vec.shape[-1] - 1)])
assert 2 ** nb_steps == svec.shape[0], "2**nb_steps and vector shape don't match"
svec = svec / (2 ** nb_steps)
for _ in range(nb_steps):
svec = svec[0::2] + tf.map_fn(transform, svec[1::2, :], svec[0::2, :])
disp = svec[0, :]
else:
vec = vec / (2 ** nb_steps)
for _ in range(nb_steps):
vec += transform(vec, vec)
disp = vec
else: # method == 'quadrature':
nb_steps = kwargs['nb_steps']
assert nb_steps >= 1, 'nb_steps should be >= 1, found: %d' % nb_steps
vec = vec / nb_steps
if time_dep:
disp = vec[..., 0]
for si in range(nb_steps - 1):
disp += transform(vec[..., si + 1], disp)
else:
disp = vec
for _ in range(nb_steps - 1):
disp += transform(vec, disp)
return disp
def volshape_to_ndgrid(volshape, **kwargs):
"""
compute Tensor ndgrid from a volume size
Parameters:
volshape: the volume size
Returns:
A list of Tensors
See Also:
ndgrid
"""
isint = [float(d).is_integer() for d in volshape]
if not all(isint):
raise ValueError("volshape needs to be a list of integers")
linvec = [tf.range(0, d) for d in volshape]
return ndgrid(*linvec, **kwargs)
def volshape_to_meshgrid(volshape, **kwargs):
"""
compute Tensor meshgrid from a volume size
Parameters:
volshape: the volume size
Returns:
A list of Tensors
See Also:
tf.meshgrid, meshgrid, ndgrid, volshape_to_ndgrid
"""
isint = [float(d).is_integer() for d in volshape]
if not all(isint):
raise ValueError("volshape needs to be a list of integers")
linvec = [tf.range(0, d) for d in volshape]
return meshgrid(*linvec, **kwargs)
def ndgrid(*args, **kwargs):
"""
broadcast Tensors on an N-D grid with ij indexing
uses meshgrid with ij indexing
Parameters:
*args: Tensors with rank 1
**args: "name" (optional)
Returns:
A list of Tensors
"""
return meshgrid(*args, indexing='ij', **kwargs)
def meshgrid(*args, **kwargs):
"""
meshgrid code that builds on (copies) tensorflow's meshgrid but dramatically
improves runtime by changing the last step to tiling instead of multiplication.
https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/python/ops/array_ops.py#L1921
Broadcasts parameters for evaluation on an N-D grid.
Given N one-dimensional coordinate arrays `*args`, returns a list `outputs`
of N-D coordinate arrays for evaluating expressions on an N-D grid.
Notes:
`meshgrid` supports cartesian ('xy') and matrix ('ij') indexing conventions.
When the `indexing` argument is set to 'xy' (the default), the broadcasting
instructions for the first two dimensions are swapped.
Examples:
Calling `X, Y = meshgrid(x, y)` with the tensors
```python
x = [1, 2, 3]
y = [4, 5, 6]
X, Y = meshgrid(x, y)
# X = [[1, 2, 3],
# [1, 2, 3],
# [1, 2, 3]]
# Y = [[4, 4, 4],
# [5, 5, 5],
# [6, 6, 6]]
```
Args:
*args: `Tensor`s with rank 1.
**kwargs:
- indexing: Either 'xy' or 'ij' (optional, default: 'xy').
- name: A name for the operation (optional).
Returns:
outputs: A list of N `Tensor`s with rank N.
Raises:
TypeError: When no keyword arguments (kwargs) are passed.
ValueError: When indexing keyword argument is not one of `xy` or `ij`.
"""
indexing = kwargs.pop("indexing", "xy")
if kwargs:
key = list(kwargs.keys())[0]
raise TypeError("'{}' is an invalid keyword argument "
"for this function".format(key))
if indexing not in ("xy", "ij"):
raise ValueError("indexing parameter must be either 'xy' or 'ij'")
# with ops.name_scope(name, "meshgrid", args) as name:
ndim = len(args)
s0 = (1,) * ndim
# Prepare reshape by inserting dimensions with size 1 where needed
output = []
for i, x in enumerate(args):
output.append(tf.reshape(tf.stack(x), (s0[:i] + (-1,) + s0[i + 1::])))
# Create parameters for broadcasting each tensor to the full size
shapes = [tf.size(x) for x in args]
sz = [x.get_shape().as_list()[0] for x in args]
# output_dtype = tf.convert_to_tensor(args[0]).dtype.base_dtype
if indexing == "xy" and ndim > 1:
output[0] = tf.reshape(output[0], (1, -1) + (1,) * (ndim - 2))
output[1] = tf.reshape(output[1], (-1, 1) + (1,) * (ndim - 2))
shapes[0], shapes[1] = shapes[1], shapes[0]
sz[0], sz[1] = sz[1], sz[0]
for i in range(len(output)):
stack_sz = [*sz[:i], 1, *sz[(i + 1):]]
if indexing == 'xy' and ndim > 1 and i < 2:
stack_sz[0], stack_sz[1] = stack_sz[1], stack_sz[0]
output[i] = tf.tile(output[i], tf.stack(stack_sz))
return output
def flatten(v):
"""flatten Tensor v"""
return tf.reshape(v, [-1])
def prod_n(lst):
prod = lst[0]
for p in lst[1:]:
prod *= p
return prod
def sub2ind(siz, subs):
"""assumes column-order major"""
# subs is a list
assert len(siz) == len(subs), 'found inconsistent siz and subs: %d %d' % (len(siz), len(subs))
k = np.cumprod(siz[::-1])
ndx = subs[-1]
for i, v in enumerate(subs[:-1][::-1]):
ndx = ndx + v * k[i]
return ndx