[e571d1]: / ext / lab2im / utils.py

Download this file

1058 lines (915 with data), 48.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
"""
This file contains all the utilities used in that project. They are classified in 5 categories:
1- loading/saving functions:
-load_volume
-save_volume
-get_volume_info
-get_list_labels
-load_array_if_path
-write_pickle
-read_pickle
-write_model_summary
2- reformatting functions
-reformat_to_list
-reformat_to_n_channels_array
3- path related functions
-list_images_in_folder
-list_files
-list_subfolders
-strip_extension
-strip_suffix
-mkdir
-mkcmd
4- shape-related functions
-get_dims
-get_resample_shape
-add_axis
-get_padding_margin
5- build affine matrices/tensors
-create_affine_transformation_matrix
-sample_affine_transform
-create_rotation_transform
-create_shearing_transform
6- miscellaneous
-infer
-LoopInfo
-get_mapping_lut
-build_training_generator
-find_closest_number_divisible_by_m
-build_binary_structure
-draw_value_from_distribution
-build_exp
If you use this code, please cite the first SynthSeg paper:
https://github.com/BBillot/lab2im/blob/master/bibtex.bib
Copyright 2020 Benjamin Billot
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.
"""
import os
import glob
import math
import time
import pickle
import numpy as np
import nibabel as nib
import tensorflow as tf
import keras.layers as KL
import keras.backend as K
from datetime import timedelta
from scipy.ndimage.morphology import distance_transform_edt
# ---------------------------------------------- loading/saving functions ----------------------------------------------
def load_volume(path_volume, im_only=True, squeeze=True, dtype=None, aff_ref=None):
"""
Load volume file.
:param path_volume: path of the volume to load. Can either be a nii, nii.gz, mgz, or npz format.
If npz format, 1) the variable name is assumed to be 'vol_data',
2) the volume is associated with an identity affine matrix and blank header.
:param im_only: (optional) if False, the function also returns the affine matrix and header of the volume.
:param squeeze: (optional) whether to squeeze the volume when loading.
:param dtype: (optional) if not None, convert the loaded volume to this numpy dtype.
:param aff_ref: (optional) If not None, the loaded volume is aligned to this affine matrix.
The returned affine matrix is also given in this new space. Must be a numpy array of dimension 4x4.
:return: the volume, with corresponding affine matrix and header if im_only is False.
"""
assert path_volume.endswith(('.nii', '.nii.gz', '.mgz', '.npz')), 'Unknown data file: %s' % path_volume
if path_volume.endswith(('.nii', '.nii.gz', '.mgz')):
x = nib.load(path_volume)
if squeeze:
volume = np.squeeze(x.get_fdata())
else:
volume = x.get_fdata()
aff = x.affine
header = x.header
else: # npz
volume = np.load(path_volume)['vol_data']
if squeeze:
volume = np.squeeze(volume)
aff = np.eye(4)
header = nib.Nifti1Header()
if dtype is not None:
if 'int' in dtype:
volume = np.round(volume)
volume = volume.astype(dtype=dtype)
# align image to reference affine matrix
if aff_ref is not None:
from ext.lab2im import edit_volumes # the import is done here to avoid import loops
n_dims, _ = get_dims(list(volume.shape), max_channels=10)
volume, aff = edit_volumes.align_volume_to_ref(volume, aff, aff_ref=aff_ref, return_aff=True, n_dims=n_dims)
if im_only:
return volume
else:
return volume, aff, header
def save_volume(volume, aff, header, path, res=None, dtype=None, n_dims=3):
"""
Save a volume.
:param volume: volume to save
:param aff: affine matrix of the volume to save. If aff is None, the volume is saved with an identity affine matrix.
aff can also be set to 'FS', in which case the volume is saved with the affine matrix of FreeSurfer outputs.
:param header: header of the volume to save. If None, the volume is saved with a blank header.
:param path: path where to save the volume.
:param res: (optional) update the resolution in the header before saving the volume.
:param dtype: (optional) numpy dtype for the saved volume.
:param n_dims: (optional) number of dimensions, to avoid confusion in multi-channel case. Default is None, where
n_dims is automatically inferred.
"""
mkdir(os.path.dirname(path))
if '.npz' in path:
np.savez_compressed(path, vol_data=volume)
else:
if header is None:
header = nib.Nifti1Header()
if isinstance(aff, str):
if aff == 'FS':
aff = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]])
elif aff is None:
aff = np.eye(4)
if dtype is not None:
if 'int' in dtype:
volume = np.round(volume)
volume = volume.astype(dtype=dtype)
nifty = nib.Nifti1Image(volume, aff, header)
nifty.set_data_dtype(dtype)
else:
nifty = nib.Nifti1Image(volume, aff, header)
if res is not None:
if n_dims is None:
n_dims, _ = get_dims(volume.shape)
res = reformat_to_list(res, length=n_dims, dtype=None)
nifty.header.set_zooms(res)
nib.save(nifty, path)
def get_volume_info(path_volume, return_volume=False, aff_ref=None, max_channels=10):
"""
Gather information about a volume: shape, affine matrix, number of dimensions and channels, header, and resolution.
:param path_volume: path of the volume to get information form.
:param return_volume: (optional) whether to return the volume along with the information.
:param aff_ref: (optional) If not None, the loaded volume is aligned to this affine matrix.
All info relative to the volume is then given in this new space. Must be a numpy array of dimension 4x4.
:param max_channels: maximum possible number of channels for the input volume.
:return: volume (if return_volume is true), and corresponding info. If aff_ref is not None, the returned aff is
the original one, i.e. the affine of the image before being aligned to aff_ref.
"""
# read image
im, aff, header = load_volume(path_volume, im_only=False)
# understand if image is multichannel
im_shape = list(im.shape)
n_dims, n_channels = get_dims(im_shape, max_channels=max_channels)
im_shape = im_shape[:n_dims]
# get labels res
if '.nii' in path_volume:
data_res = np.array(header['pixdim'][1:n_dims + 1])
elif '.mgz' in path_volume:
data_res = np.array(header['delta']) # mgz image
else:
data_res = np.array([1.0] * n_dims)
# align to given affine matrix
if aff_ref is not None:
from ext.lab2im import edit_volumes # the import is done here to avoid import loops
ras_axes = edit_volumes.get_ras_axes(aff, n_dims=n_dims)
ras_axes_ref = edit_volumes.get_ras_axes(aff_ref, n_dims=n_dims)
im = edit_volumes.align_volume_to_ref(im, aff, aff_ref=aff_ref, n_dims=n_dims)
im_shape = np.array(im_shape)
data_res = np.array(data_res)
im_shape[ras_axes_ref] = im_shape[ras_axes]
data_res[ras_axes_ref] = data_res[ras_axes]
im_shape = im_shape.tolist()
# return info
if return_volume:
return im, im_shape, aff, n_dims, n_channels, header, data_res
else:
return im_shape, aff, n_dims, n_channels, header, data_res
def get_list_labels(label_list=None, labels_dir=None, save_label_list=None, FS_sort=False):
"""This function reads or computes a list of all label values used in a set of label maps.
It can also sort all labels according to FreeSurfer lut.
:param label_list: (optional) already computed label_list. Can be a sequence, a 1d numpy array, or the path to
a numpy 1d array.
:param labels_dir: (optional) if path_label_list is None, the label list is computed by reading all the label maps
in the given folder. Can also be the path to a single label map.
:param save_label_list: (optional) path where to save the label list.
:param FS_sort: (optional) whether to sort label values according to the FreeSurfer classification.
If true, the label values will be ordered as follows: neutral labels first (i.e. non-sided), left-side labels,
and right-side labels. If FS_sort is True, this function also returns the number of neutral labels in label_list.
:return: the label list (numpy 1d array), and the number of neutral (i.e. non-sided) labels if FS_sort is True.
If one side of the brain is not represented at all in label_list, all labels are considered as neutral, and
n_neutral_labels = len(label_list).
"""
# load label list if previously computed
if label_list is not None:
label_list = np.array(reformat_to_list(label_list, load_as_numpy=True, dtype='int'))
# compute label list from all label files
elif labels_dir is not None:
print('Compiling list of unique labels')
# go through all labels files and compute unique list of labels
labels_paths = list_images_in_folder(labels_dir)
label_list = np.empty(0)
loop_info = LoopInfo(len(labels_paths), 10, 'processing', print_time=True)
for lab_idx, path in enumerate(labels_paths):
loop_info.update(lab_idx)
y = load_volume(path, dtype='int32')
y_unique = np.unique(y)
label_list = np.unique(np.concatenate((label_list, y_unique))).astype('int')
else:
raise Exception('either label_list, path_label_list or labels_dir should be provided')
# sort labels in neutral/left/right according to FS labels
n_neutral_labels = 0
if FS_sort:
neutral_FS_labels = [0, 14, 15, 16, 21, 22, 23, 24, 72, 77, 80, 85, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 165, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210,
251, 252, 253, 254, 255, 258, 259, 260, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340,
502, 506, 507, 508, 509, 511, 512, 514, 515, 516, 517, 530,
531, 532, 533, 534, 535, 536, 537]
neutral = list()
left = list()
right = list()
for la in label_list:
if la in neutral_FS_labels:
if la not in neutral:
neutral.append(la)
elif (0 < la < 14) | (16 < la < 21) | (24 < la < 40) | (135 < la < 139) | (1000 <= la <= 1035) | \
(la == 865) | (20100 < la < 20110):
if la not in left:
left.append(la)
elif (39 < la < 72) | (162 < la < 165) | (2000 <= la <= 2035) | (20000 < la < 20010) | (la == 139) | \
(la == 866):
if la not in right:
right.append(la)
else:
raise Exception('label {} not in our current FS classification, '
'please update get_list_labels in utils.py'.format(la))
label_list = np.concatenate([sorted(neutral), sorted(left), sorted(right)])
if ((len(left) > 0) & (len(right) > 0)) | ((len(left) == 0) & (len(right) == 0)):
n_neutral_labels = len(neutral)
else:
n_neutral_labels = len(label_list)
# save labels if specified
if save_label_list is not None:
np.save(save_label_list, np.int32(label_list))
if FS_sort:
return np.int32(label_list), n_neutral_labels
else:
return np.int32(label_list), None
def load_array_if_path(var, load_as_numpy=True):
"""If var is a string and load_as_numpy is True, this function loads the array writen at the path indicated by var.
Otherwise it simply returns var as it is."""
if (isinstance(var, str)) & load_as_numpy:
assert os.path.isfile(var), 'No such path: %s' % var
var = np.load(var)
return var
def write_pickle(filepath, obj):
""" write a python object with a pickle at a given path"""
with open(filepath, 'wb') as file:
pickler = pickle.Pickler(file)
pickler.dump(obj)
def read_pickle(filepath):
""" read a python object with a pickle"""
with open(filepath, 'rb') as file:
unpickler = pickle.Unpickler(file)
return unpickler.load()
def write_model_summary(model, filepath='./model_summary.txt', line_length=150):
"""Write the summary of a keras model at a given path, with a given length for each line"""
with open(filepath, 'w') as fh:
model.summary(print_fn=lambda x: fh.write(x + '\n'), line_length=line_length)
# ----------------------------------------------- reformatting functions -----------------------------------------------
def reformat_to_list(var, length=None, load_as_numpy=False, dtype=None):
"""This function takes a variable and reformat it into a list of desired
length and type (int, float, bool, str).
If variable is a string, and load_as_numpy is True, it will be loaded as a numpy array.
If variable is None, this function returns None.
:param var: a str, int, float, list, tuple, or numpy array
:param length: (optional) if var is a single item, it will be replicated to a list of this length
:param load_as_numpy: (optional) whether var is the path to a numpy array
:param dtype: (optional) convert all item to this type. Can be 'int', 'float', 'bool', or 'str'
:return: reformatted list
"""
# convert to list
if var is None:
return None
var = load_array_if_path(var, load_as_numpy=load_as_numpy)
if isinstance(var, (int, float, np.int, np.int32, np.int64, np.float, np.float32, np.float64)):
var = [var]
elif isinstance(var, tuple):
var = list(var)
elif isinstance(var, np.ndarray):
if var.shape == (1,):
var = [var[0]]
else:
var = np.squeeze(var).tolist()
elif isinstance(var, str):
var = [var]
elif isinstance(var, bool):
var = [var]
if isinstance(var, list):
if length is not None:
if len(var) == 1:
var = var * length
elif len(var) != length:
raise ValueError('if var is a list/tuple/numpy array, it should be of length 1 or {0}, '
'had {1}'.format(length, var))
else:
raise TypeError('var should be an int, float, tuple, list, numpy array, or path to numpy array')
# convert items type
if dtype is not None:
if dtype == 'int':
var = [int(v) for v in var]
elif dtype == 'float':
var = [float(v) for v in var]
elif dtype == 'bool':
var = [bool(v) for v in var]
elif dtype == 'str':
var = [str(v) for v in var]
else:
raise ValueError("dtype should be 'str', 'float', 'int', or 'bool'; had {}".format(dtype))
return var
def reformat_to_n_channels_array(var, n_dims=3, n_channels=1):
"""This function takes an int, float, list or tuple and reformat it to an array of shape (n_channels, n_dims).
If resolution is a str, it will be assumed to be the path of a numpy array.
If resolution is a numpy array, it will be checked to have shape (n_channels, n_dims).
Finally if resolution is None, this function returns None as well."""
if var is None:
return [None] * n_channels
if isinstance(var, str):
var = np.load(var)
# convert to numpy array
if isinstance(var, (int, float, list, tuple)):
var = reformat_to_list(var, n_dims)
var = np.tile(np.array(var), (n_channels, 1))
# check shape if numpy array
elif isinstance(var, np.ndarray):
if n_channels == 1:
var = var.reshape((1, n_dims))
else:
if np.squeeze(var).shape == (n_dims,):
var = np.tile(var.reshape((1, n_dims)), (n_channels, 1))
elif var.shape != (n_channels, n_dims):
raise ValueError('if array, var should be {0} or {1}'.format((1, n_dims), (n_channels, n_dims)))
else:
raise TypeError('var should be int, float, list, tuple or ndarray')
return np.round(var, 3)
# ----------------------------------------------- path-related functions -----------------------------------------------
def list_images_in_folder(path_dir, include_single_image=True, check_if_empty=True):
"""List all files with extension nii, nii.gz, mgz, or npz within a folder."""
basename = os.path.basename(path_dir)
if include_single_image & \
(('.nii.gz' in basename) | ('.nii' in basename) | ('.mgz' in basename) | ('.npz' in basename)):
assert os.path.isfile(path_dir), 'file %s does not exist' % path_dir
list_images = [path_dir]
else:
if os.path.isdir(path_dir):
list_images = sorted(glob.glob(os.path.join(path_dir, '*nii.gz')) +
glob.glob(os.path.join(path_dir, '*nii')) +
glob.glob(os.path.join(path_dir, '*.mgz')) +
glob.glob(os.path.join(path_dir, '*.npz')))
else:
raise Exception('Folder does not exist: %s' % path_dir)
if check_if_empty:
assert len(list_images) > 0, 'no .nii, .nii.gz, .mgz or .npz image could be found in %s' % path_dir
return list_images
def list_files(path_dir, whole_path=True, expr=None, cond_type='or'):
"""This function returns a list of files contained in a folder, with possible regexp.
:param path_dir: path of a folder
:param whole_path: (optional) whether to return whole path or just the filenames.
:param expr: (optional) regexp for files to list. Can be a str or a list of str.
:param cond_type: (optional) if exp is a list, specify the logical link between expressions in exp.
Can be 'or', or 'and'.
:return: a list of files
"""
assert isinstance(whole_path, bool), "whole_path should be bool"
assert cond_type in ['or', 'and'], "cond_type should be either 'or', or 'and'"
if whole_path:
files_list = sorted([os.path.join(path_dir, f) for f in os.listdir(path_dir)
if os.path.isfile(os.path.join(path_dir, f))])
else:
files_list = sorted([f for f in os.listdir(path_dir) if os.path.isfile(os.path.join(path_dir, f))])
if expr is not None: # assumed to be either str or list of str
if isinstance(expr, str):
expr = [expr]
elif not isinstance(expr, (list, tuple)):
raise Exception("if specified, 'expr' should be a string or list of strings.")
matched_list_files = list()
for match in expr:
tmp_matched_files_list = sorted([f for f in files_list if match in os.path.basename(f)])
if cond_type == 'or':
files_list = [f for f in files_list if f not in tmp_matched_files_list]
matched_list_files += tmp_matched_files_list
elif cond_type == 'and':
files_list = tmp_matched_files_list
matched_list_files = tmp_matched_files_list
files_list = sorted(matched_list_files)
return files_list
def list_subfolders(path_dir, whole_path=True, expr=None, cond_type='or'):
"""This function returns a list of subfolders contained in a folder, with possible regexp.
:param path_dir: path of a folder
:param whole_path: (optional) whether to return whole path or just the subfolder names.
:param expr: (optional) regexp for files to list. Can be a str or a list of str.
:param cond_type: (optional) if exp is a list, specify the logical link between expressions in exp.
Can be 'or', or 'and'.
:return: a list of subfolders
"""
assert isinstance(whole_path, bool), "whole_path should be bool"
assert cond_type in ['or', 'and'], "cond_type should be either 'or', or 'and'"
if whole_path:
subdirs_list = sorted([os.path.join(path_dir, f) for f in os.listdir(path_dir)
if os.path.isdir(os.path.join(path_dir, f))])
else:
subdirs_list = sorted([f for f in os.listdir(path_dir) if os.path.isdir(os.path.join(path_dir, f))])
if expr is not None: # assumed to be either str or list of str
if isinstance(expr, str):
expr = [expr]
elif not isinstance(expr, (list, tuple)):
raise Exception("if specified, 'expr' should be a string or list of strings.")
matched_list_subdirs = list()
for match in expr:
tmp_matched_list_subdirs = sorted([f for f in subdirs_list if match in os.path.basename(f)])
if cond_type == 'or':
subdirs_list = [f for f in subdirs_list if f not in tmp_matched_list_subdirs]
matched_list_subdirs += tmp_matched_list_subdirs
elif cond_type == 'and':
subdirs_list = tmp_matched_list_subdirs
matched_list_subdirs = tmp_matched_list_subdirs
subdirs_list = sorted(matched_list_subdirs)
return subdirs_list
def get_image_extension(path):
name = os.path.basename(path)
if name[-7:] == '.nii.gz':
return 'nii.gz'
elif name[-4:] == '.mgz':
return 'mgz'
elif name[-4:] == '.nii':
return 'nii'
elif name[-4:] == '.npz':
return 'npz'
def strip_extension(path):
"""Strip classical image extensions (.nii.gz, .nii, .mgz, .npz) from a filename."""
return path.replace('.nii.gz', '').replace('.nii', '').replace('.mgz', '').replace('.npz', '')
def strip_suffix(path):
"""Strip classical image suffix from a filename."""
path = path.replace('_aseg', '')
path = path.replace('aseg', '')
path = path.replace('.aseg', '')
path = path.replace('_aseg_1', '')
path = path.replace('_aseg_2', '')
path = path.replace('aseg_1_', '')
path = path.replace('aseg_2_', '')
path = path.replace('_orig', '')
path = path.replace('orig', '')
path = path.replace('.orig', '')
path = path.replace('_norm', '')
path = path.replace('norm', '')
path = path.replace('.norm', '')
path = path.replace('_talairach', '')
path = path.replace('GSP_FS_4p5', 'GSP')
path = path.replace('.nii_crispSegmentation', '')
path = path.replace('_crispSegmentation', '')
path = path.replace('_seg', '')
path = path.replace('.seg', '')
path = path.replace('seg', '')
path = path.replace('_seg_1', '')
path = path.replace('_seg_2', '')
path = path.replace('seg_1_', '')
path = path.replace('seg_2_', '')
return path
def mkdir(path_dir):
"""Recursively creates the current dir as well as its parent folders if they do not already exist."""
if path_dir[-1] == '/':
path_dir = path_dir[:-1]
if not os.path.isdir(path_dir):
list_dir_to_create = [path_dir]
while not os.path.isdir(os.path.dirname(list_dir_to_create[-1])):
list_dir_to_create.append(os.path.dirname(list_dir_to_create[-1]))
for dir_to_create in reversed(list_dir_to_create):
os.mkdir(dir_to_create)
def mkcmd(*args):
"""Creates terminal command with provided inputs.
Example: mkcmd('mv', 'source', 'dest') will give 'mv source dest'."""
return ' '.join([str(arg) for arg in args])
# ---------------------------------------------- shape-related functions -----------------------------------------------
def get_dims(shape, max_channels=10):
"""Get the number of dimensions and channels from the shape of an array.
The number of dimensions is assumed to be the length of the shape, as long as the shape of the last dimension is
inferior or equal to max_channels (default 3).
:param shape: shape of an array. Can be a sequence or a 1d numpy array.
:param max_channels: maximum possible number of channels.
:return: the number of dimensions and channels associated with the provided shape.
example 1: get_dims([150, 150, 150], max_channels=10) = (3, 1)
example 2: get_dims([150, 150, 150, 3], max_channels=10) = (3, 3)
example 3: get_dims([150, 150, 150, 15], max_channels=10) = (4, 1), because 5>3"""
if shape[-1] <= max_channels:
n_dims = len(shape) - 1
n_channels = shape[-1]
else:
n_dims = len(shape)
n_channels = 1
return n_dims, n_channels
def get_resample_shape(patch_shape, factor, n_channels=None):
"""Compute the shape of a resampled array given a shape factor.
:param patch_shape: size of the initial array (without number of channels).
:param factor: resampling factor. Can be a number, sequence, or 1d numpy array.
:param n_channels: (optional) if not None, add a number of channel at the end of the computed shape.
:return: list containing the shape of the input array after being resampled by the given factor.
"""
factor = reformat_to_list(factor, length=len(patch_shape))
shape = [math.ceil(patch_shape[i] * factor[i]) for i in range(len(patch_shape))]
if n_channels is not None:
shape += [n_channels]
return shape
def add_axis(x, axis=0):
"""Add axis to a numpy array.
:param x: input array
:param axis: index of the new axis to add. Can also be a list of indices to add several axes at the same time."""
axis = reformat_to_list(axis)
for ax in axis:
x = np.expand_dims(x, axis=ax)
return x
def get_padding_margin(cropping, loss_cropping):
"""Compute padding margin"""
if (cropping is not None) & (loss_cropping is not None):
cropping = reformat_to_list(cropping)
loss_cropping = reformat_to_list(loss_cropping)
n_dims = max(len(cropping), len(loss_cropping))
cropping = reformat_to_list(cropping, length=n_dims)
loss_cropping = reformat_to_list(loss_cropping, length=n_dims)
padding_margin = [int((cropping[i] - loss_cropping[i]) / 2) for i in range(n_dims)]
if len(padding_margin) == 1:
padding_margin = padding_margin[0]
else:
padding_margin = None
return padding_margin
# -------------------------------------------- build affine matrices/tensors -------------------------------------------
def create_affine_transformation_matrix(n_dims, scaling=None, rotation=None, shearing=None, translation=None):
"""Create a 4x4 affine transformation matrix from specified values
:param n_dims: integer, can either be 2 or 3.
:param scaling: list of 3 scaling values
:param rotation: list of 3 angles (degrees) for rotations around 1st, 2nd, 3rd axis
:param shearing: list of 6 shearing values
:param translation: list of 3 values
:return: 4x4 numpy matrix
"""
T_scaling = np.eye(n_dims + 1)
T_shearing = np.eye(n_dims + 1)
T_translation = np.eye(n_dims + 1)
if scaling is not None:
T_scaling[np.arange(n_dims + 1), np.arange(n_dims + 1)] = np.append(scaling, 1)
if shearing is not None:
shearing_index = np.ones((n_dims + 1, n_dims + 1), dtype='bool')
shearing_index[np.eye(n_dims + 1, dtype='bool')] = False
shearing_index[-1, :] = np.zeros((n_dims + 1))
shearing_index[:, -1] = np.zeros((n_dims + 1))
T_shearing[shearing_index] = shearing
if translation is not None:
T_translation[np.arange(n_dims), n_dims * np.ones(n_dims, dtype='int')] = translation
if n_dims == 2:
if rotation is None:
rotation = np.zeros(1)
else:
rotation = np.asarray(rotation) * (math.pi / 180)
T_rot = np.eye(n_dims + 1)
T_rot[np.array([0, 1, 0, 1]), np.array([0, 0, 1, 1])] = [np.cos(rotation[0]), np.sin(rotation[0]),
np.sin(rotation[0]) * -1, np.cos(rotation[0])]
return T_translation @ T_rot @ T_shearing @ T_scaling
else:
if rotation is None:
rotation = np.zeros(n_dims)
else:
rotation = np.asarray(rotation) * (math.pi / 180)
T_rot1 = np.eye(n_dims + 1)
T_rot1[np.array([1, 2, 1, 2]), np.array([1, 1, 2, 2])] = [np.cos(rotation[0]), np.sin(rotation[0]),
np.sin(rotation[0]) * -1, np.cos(rotation[0])]
T_rot2 = np.eye(n_dims + 1)
T_rot2[np.array([0, 2, 0, 2]), np.array([0, 0, 2, 2])] = [np.cos(rotation[1]), np.sin(rotation[1]) * -1,
np.sin(rotation[1]), np.cos(rotation[1])]
T_rot3 = np.eye(n_dims + 1)
T_rot3[np.array([0, 1, 0, 1]), np.array([0, 0, 1, 1])] = [np.cos(rotation[2]), np.sin(rotation[2]),
np.sin(rotation[2]) * -1, np.cos(rotation[2])]
return T_translation @ T_rot3 @ T_rot2 @ T_rot1 @ T_shearing @ T_scaling
def sample_affine_transform(batchsize,
n_dims,
rotation_bounds=False,
scaling_bounds=False,
shearing_bounds=False,
translation_bounds=False,
enable_90_rotations=False):
"""build batchsize x 4 x 4 tensor representing an affine transformation in homogeneous coordinates.
If return_inv is True, also returns the inverse of the created affine matrix."""
if (rotation_bounds is not False) | (enable_90_rotations is not False):
if n_dims == 2:
if rotation_bounds is not False:
rotation = draw_value_from_distribution(rotation_bounds,
size=1,
default_range=15.0,
return_as_tensor=True,
batchsize=batchsize)
else:
rotation = tf.zeros(tf.concat([batchsize, tf.ones(1, dtype='int32')], axis=0))
else: # n_dims = 3
if rotation_bounds is not False:
rotation = draw_value_from_distribution(rotation_bounds,
size=n_dims,
default_range=15.0,
return_as_tensor=True,
batchsize=batchsize)
else:
rotation = tf.zeros(tf.concat([batchsize, 3 * tf.ones(1, dtype='int32')], axis=0))
if enable_90_rotations:
rotation = tf.cast(tf.random.uniform(tf.shape(rotation), maxval=4, dtype='int32') * 90, 'float32') \
+ rotation
T_rot = create_rotation_transform(rotation, n_dims)
else:
T_rot = tf.tile(tf.expand_dims(tf.eye(n_dims), axis=0),
tf.concat([batchsize, tf.ones(2, dtype='int32')], axis=0))
if shearing_bounds is not False:
shearing = draw_value_from_distribution(shearing_bounds,
size=n_dims ** 2 - n_dims,
default_range=.01,
return_as_tensor=True,
batchsize=batchsize)
T_shearing = create_shearing_transform(shearing, n_dims)
else:
T_shearing = tf.tile(tf.expand_dims(tf.eye(n_dims), axis=0),
tf.concat([batchsize, tf.ones(2, dtype='int32')], axis=0))
if scaling_bounds is not False:
scaling = draw_value_from_distribution(scaling_bounds,
size=n_dims,
centre=1,
default_range=.15,
return_as_tensor=True,
batchsize=batchsize)
T_scaling = tf.linalg.diag(scaling)
else:
T_scaling = tf.tile(tf.expand_dims(tf.eye(n_dims), axis=0),
tf.concat([batchsize, tf.ones(2, dtype='int32')], axis=0))
T = tf.matmul(T_scaling, tf.matmul(T_shearing, T_rot))
if translation_bounds is not False:
translation = draw_value_from_distribution(translation_bounds,
size=n_dims,
default_range=5,
return_as_tensor=True,
batchsize=batchsize)
T = tf.concat([T, tf.expand_dims(translation, axis=-1)], axis=-1)
else:
T = tf.concat([T, tf.zeros(tf.concat([tf.shape(T)[:2], tf.ones(1, dtype='int32')], 0))], axis=-1)
# build rigid transform
T_last_row = tf.expand_dims(tf.concat([tf.zeros((1, n_dims)), tf.ones((1, 1))], axis=1), 0)
T_last_row = tf.tile(T_last_row, tf.concat([batchsize, tf.ones(2, dtype='int32')], axis=0))
T = tf.concat([T, T_last_row], axis=1)
return T
def create_rotation_transform(rotation, n_dims):
"""build rotation transform from 3d or 2d rotation coefficients. Angles are given in degrees."""
rotation = rotation * np.pi / 180
if n_dims == 3:
shape = tf.shape(tf.expand_dims(rotation[..., 0], -1))
Rx_row0 = tf.expand_dims(tf.tile(tf.expand_dims(tf.convert_to_tensor([1., 0., 0.]), 0), shape), axis=1)
Rx_row1 = tf.stack([tf.zeros(shape), tf.expand_dims(tf.cos(rotation[..., 0]), -1),
tf.expand_dims(-tf.sin(rotation[..., 0]), -1)], axis=-1)
Rx_row2 = tf.stack([tf.zeros(shape), tf.expand_dims(tf.sin(rotation[..., 0]), -1),
tf.expand_dims(tf.cos(rotation[..., 0]), -1)], axis=-1)
Rx = tf.concat([Rx_row0, Rx_row1, Rx_row2], axis=1)
Ry_row0 = tf.stack([tf.expand_dims(tf.cos(rotation[..., 1]), -1), tf.zeros(shape),
tf.expand_dims(tf.sin(rotation[..., 1]), -1)], axis=-1)
Ry_row1 = tf.expand_dims(tf.tile(tf.expand_dims(tf.convert_to_tensor([0., 1., 0.]), 0), shape), axis=1)
Ry_row2 = tf.stack([tf.expand_dims(-tf.sin(rotation[..., 1]), -1), tf.zeros(shape),
tf.expand_dims(tf.cos(rotation[..., 1]), -1)], axis=-1)
Ry = tf.concat([Ry_row0, Ry_row1, Ry_row2], axis=1)
Rz_row0 = tf.stack([tf.expand_dims(tf.cos(rotation[..., 2]), -1),
tf.expand_dims(-tf.sin(rotation[..., 2]), -1), tf.zeros(shape)], axis=-1)
Rz_row1 = tf.stack([tf.expand_dims(tf.sin(rotation[..., 2]), -1),
tf.expand_dims(tf.cos(rotation[..., 2]), -1), tf.zeros(shape)], axis=-1)
Rz_row2 = tf.expand_dims(tf.tile(tf.expand_dims(tf.convert_to_tensor([0., 0., 1.]), 0), shape), axis=1)
Rz = tf.concat([Rz_row0, Rz_row1, Rz_row2], axis=1)
T_rot = tf.matmul(tf.matmul(Rx, Ry), Rz)
elif n_dims == 2:
R_row0 = tf.stack([tf.expand_dims(tf.cos(rotation[..., 0]), -1),
tf.expand_dims(tf.sin(rotation[..., 0]), -1)], axis=-1)
R_row1 = tf.stack([tf.expand_dims(-tf.sin(rotation[..., 0]), -1),
tf.expand_dims(tf.cos(rotation[..., 0]), -1)], axis=-1)
T_rot = tf.concat([R_row0, R_row1], axis=1)
else:
raise Exception('only supports 2 or 3D.')
return T_rot
def create_shearing_transform(shearing, n_dims):
"""build shearing transform from 2d/3d shearing coefficients"""
shape = tf.shape(tf.expand_dims(shearing[..., 0], -1))
if n_dims == 3:
shearing_row0 = tf.stack([tf.ones(shape), tf.expand_dims(shearing[..., 0], -1),
tf.expand_dims(shearing[..., 1], -1)], axis=-1)
shearing_row1 = tf.stack([tf.expand_dims(shearing[..., 2], -1), tf.ones(shape),
tf.expand_dims(shearing[..., 3], -1)], axis=-1)
shearing_row2 = tf.stack([tf.expand_dims(shearing[..., 4], -1), tf.expand_dims(shearing[..., 5], -1),
tf.ones(shape)], axis=-1)
T_shearing = tf.concat([shearing_row0, shearing_row1, shearing_row2], axis=1)
elif n_dims == 2:
shearing_row0 = tf.stack([tf.ones(shape), tf.expand_dims(shearing[..., 0], -1)], axis=-1)
shearing_row1 = tf.stack([tf.expand_dims(shearing[..., 1], -1), tf.ones(shape)], axis=-1)
T_shearing = tf.concat([shearing_row0, shearing_row1], axis=1)
else:
raise Exception('only supports 2 or 3D.')
return T_shearing
# --------------------------------------------------- miscellaneous ----------------------------------------------------
def infer(x):
""" Try to parse input to float. If it fails, tries boolean, and otherwise keep it as string """
try:
x = float(x)
except ValueError:
if x == 'False':
x = False
elif x == 'True':
x = True
elif not isinstance(x, str):
raise TypeError('input should be an int/float/boolean/str, had {}'.format(type(x)))
return x
class LoopInfo:
"""
Class to print the current iteration in a for loop, and optionally the estimated remaining time.
Instantiate just before the loop, and call the update method at the start of the loop.
The printed text has the following format:
processing i/total remaining time: hh:mm:ss
"""
def __init__(self, n_iterations, spacing=10, text='processing', print_time=False):
"""
:param n_iterations: total number of iterations of the for loop.
:param spacing: frequency at which the update info will be printed on screen.
:param text: text to print. Default is processing.
:param print_time: whether to print the estimated remaining time. Default is False.
"""
# loop parameters
self.n_iterations = n_iterations
self.spacing = spacing
# text parameters
self.text = text
self.print_time = print_time
self.print_previous_time = False
self.align = len(str(self.n_iterations)) * 2 + 1 + 3
# timing parameters
self.iteration_durations = np.zeros((n_iterations,))
self.start = time.time()
self.previous = time.time()
def update(self, idx):
# time iteration
now = time.time()
self.iteration_durations[idx] = now - self.previous
self.previous = now
# print text
if idx == 0:
print(self.text + ' 1/{}'.format(self.n_iterations))
elif idx % self.spacing == self.spacing - 1:
iteration = str(idx + 1) + '/' + str(self.n_iterations)
if self.print_time:
# estimate remaining time
max_duration = np.max(self.iteration_durations)
average_duration = np.mean(self.iteration_durations[self.iteration_durations > .01 * max_duration])
remaining_time = int(average_duration * (self.n_iterations - idx))
# print total remaining time only if it is greater than 1s or if it was previously printed
if (remaining_time > 1) | self.print_previous_time:
eta = str(timedelta(seconds=remaining_time))
print(self.text + ' {:<{x}} remaining time: {}'.format(iteration, eta, x=self.align))
self.print_previous_time = True
else:
print(self.text + ' {}'.format(iteration))
else:
print(self.text + ' {}'.format(iteration))
def get_mapping_lut(source, dest=None):
"""This functions returns the look-up table to map a list of N values (source) to another list (dest).
If the second list is not given, we assume it is equal to [0, ..., N-1]."""
# initialise
source = np.array(reformat_to_list(source), dtype='int32')
n_labels = source.shape[0]
# build new label list if necessary
if dest is None:
dest = np.arange(n_labels, dtype='int32')
else:
assert len(source) == len(dest), 'label_list and new_label_list should have the same length'
dest = np.array(reformat_to_list(dest, dtype='int'))
# build look-up table
lut = np.zeros(np.max(source) + 1, dtype='int32')
for source, dest in zip(source, dest):
lut[source] = dest
return lut
def build_training_generator(gen, batchsize):
"""Build generator for training a network."""
while True:
inputs = next(gen)
if batchsize > 1:
target = np.concatenate([np.zeros((1, 1))] * batchsize, 0)
else:
target = np.zeros((1, 1))
yield inputs, target
def find_closest_number_divisible_by_m(n, m, answer_type='lower'):
"""Return the closest integer to n that is divisible by m. answer_type can either be 'closer', 'lower' (only returns
values lower than n), or 'higher' (only returns values higher than m)."""
if n % m == 0:
return n
else:
q = int(n / m)
lower = q * m
higher = (q + 1) * m
if answer_type == 'lower':
return lower
elif answer_type == 'higher':
return higher
elif answer_type == 'closer':
return lower if (n - lower) < (higher - n) else higher
else:
raise Exception('answer_type should be lower, higher, or closer, had : %s' % answer_type)
def build_binary_structure(connectivity, n_dims, shape=None):
"""Return a dilation/erosion element with provided connectivity"""
if shape is None:
shape = [connectivity * 2 + 1] * n_dims
else:
shape = reformat_to_list(shape, length=n_dims)
dist = np.ones(shape)
center = tuple([tuple([int(s / 2)]) for s in shape])
dist[center] = 0
dist = distance_transform_edt(dist)
struct = (dist <= connectivity) * 1
return struct
def draw_value_from_distribution(hyperparameter,
size=1,
distribution='uniform',
centre=0.,
default_range=10.0,
positive_only=False,
return_as_tensor=False,
batchsize=None):
"""Sample values from a uniform, or normal distribution of given hyperparameters.
These hyperparameters are to the number of 2 in both uniform and normal cases.
:param hyperparameter: values of the hyperparameters. Can either be:
1) None, in each case the two hyperparameters are given by [center-default_range, center+default_range],
2) a number, where the two hyperparameters are given by [centre-hyperparameter, centre+hyperparameter],
3) a sequence of length 2, directly defining the two hyperparameters: [min, max] if the distribution is uniform,
[mean, std] if the distribution is normal.
4) a numpy array, with size (2, m). In this case, the function returns a 1d array of size m, where each value has
been sampled independently with the specified hyperparameters. If the distribution is uniform, rows correspond to
its lower and upper bounds, and if the distribution is normal, rows correspond to its mean and std deviation.
5) a numpy array of size (2*n, m). Same as 4) but we first randomly select a block of two rows among the
n possibilities.
6) the path to a numpy array corresponding to case 4 or 5.
7) False, in which case this function returns None.
:param size: (optional) number of values to sample. All values are sampled independently.
Used only if hyperparameter is not a numpy array.
:param distribution: (optional) the distribution type. Can be 'uniform' or 'normal'. Default is 'uniform'.
:param centre: (optional) default centre to use if hyperparameter is None or a number.
:param default_range: (optional) default range to use if hyperparameter is None.
:param positive_only: (optional) whether to reset all negative values to zero.
:param return_as_tensor: (optional) whether to return the result as a tensorflow tensor
:param batchsize: (optional) if return_as_tensor is true, then you can sample a tensor of a given batchsize. Give
this batchsize as a tensorflow tensor here.
:return: a float, or a numpy 1d array if size > 1, or hyperparameter is itself a numpy array.
Returns None if hyperparameter is False.
"""
# return False is hyperparameter is False
if hyperparameter is False:
return None
# reformat parameter_range
hyperparameter = load_array_if_path(hyperparameter, load_as_numpy=True)
if not isinstance(hyperparameter, np.ndarray):
if hyperparameter is None:
hyperparameter = np.array([[centre - default_range] * size, [centre + default_range] * size])
elif isinstance(hyperparameter, (int, float)):
hyperparameter = np.array([[centre - hyperparameter] * size, [centre + hyperparameter] * size])
elif isinstance(hyperparameter, (list, tuple)):
assert len(hyperparameter) == 2, 'if list, parameter_range should be of length 2.'
hyperparameter = np.transpose(np.tile(np.array(hyperparameter), (size, 1)))
else:
raise ValueError('parameter_range should either be None, a number, a sequence, or a numpy array.')
elif isinstance(hyperparameter, np.ndarray):
assert hyperparameter.shape[0] % 2 == 0, 'number of rows of parameter_range should be divisible by 2'
n_modalities = int(hyperparameter.shape[0] / 2)
modality_idx = 2 * np.random.randint(n_modalities)
hyperparameter = hyperparameter[modality_idx: modality_idx + 2, :]
# draw values as tensor
if return_as_tensor:
shape = KL.Lambda(lambda x: tf.convert_to_tensor(hyperparameter.shape[1], 'int32'))([])
if batchsize is not None:
shape = KL.Lambda(lambda x: tf.concat([x[0], tf.expand_dims(x[1], axis=0)], axis=0))([batchsize, shape])
if distribution == 'uniform':
parameter_value = KL.Lambda(lambda x: tf.random.uniform(shape=x,
minval=hyperparameter[0, :],
maxval=hyperparameter[1, :]))(shape)
elif distribution == 'normal':
parameter_value = KL.Lambda(lambda x: tf.random.normal(shape=x,
mean=hyperparameter[0, :],
stddev=hyperparameter[1, :]))(shape)
else:
raise ValueError("Distribution not supported, should be 'uniform' or 'normal'.")
if positive_only:
parameter_value = KL.Lambda(lambda x: K.clip(x, 0, None))(parameter_value)
# draw values as numpy array
else:
if distribution == 'uniform':
parameter_value = np.random.uniform(low=hyperparameter[0, :], high=hyperparameter[1, :])
elif distribution == 'normal':
parameter_value = np.random.normal(loc=hyperparameter[0, :], scale=hyperparameter[1, :])
else:
raise ValueError("Distribution not supported, should be 'uniform' or 'normal'.")
if positive_only:
parameter_value[parameter_value < 0] = 0
return parameter_value
def build_exp(x, first, last, fix_point):
# first = f(0), last = f(+inf), fix_point = [x0, f(x0))]
a = last
b = first - last
c = - (1 / fix_point[0]) * np.log((fix_point[1] - last) / (first - last))
return a + b * np.exp(-c * x)