"""
This file regroups several custom keras layers used in the generation model:
- RandomSpatialDeformation,
- RandomCrop,
- RandomFlip,
- SampleConditionalGMM,
- SampleResolution,
- GaussianBlur,
- DynamicGaussianBlur,
- MimicAcquisition,
- BiasFieldCorruption,
- IntensityAugmentation,
- DiceLoss,
- WeightedL2Loss,
- ResetValuesToZero,
- ConvertLabels,
- PadAroundCentre,
- MaskEdges
- ImageGradients
- RandomDilationErosion
If you use this code, please cite the first SynthSeg paper:
https://github.com/BBillot/lab2im/blob/master/bibtex.bib
Copyright 2020 Benjamin Billot
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.
"""
# python imports
import keras
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.layers import Layer
# project imports
from ext.lab2im import utils
from ext.lab2im import edit_tensors as l2i_et
# third-party imports
from ext.neuron import utils as nrn_utils
import ext.neuron.layers as nrn_layers
class RandomSpatialDeformation(Layer):
"""This layer spatially deforms one or several tensors with a combination of affine and elastic transformations.
The input tensors are expected to have the same shape [batchsize, shape_dim1, ..., shape_dimn, channel].
The non-linear deformation is obtained by:
1) a small-size SVF is sampled from a centred normal distribution of random standard deviation.
2) it is resized with trilinear interpolation to half the shape of the input tensor
3) it is integrated to obtain a diffeomorphic transformation
4) finally, it is resized (again with trilinear interpolation) to full image size
:param scaling_bounds: (optional) range of the random scaling to apply. The scaling factor for each dimension is
sampled from a uniform distribution of predefined bounds. Can either be:
1) a number, in which case the scaling factor is independently sampled from the uniform distribution of bounds
[1-scaling_bounds, 1+scaling_bounds] for each dimension.
2) a sequence, in which case the scaling factor is sampled from the uniform distribution of bounds
(1-scaling_bounds[i], 1+scaling_bounds[i]) for the i-th dimension.
3) a numpy array of shape (2, n_dims), in which case the scaling factor is sampled from the uniform distribution
of bounds (scaling_bounds[0, i], scaling_bounds[1, i]) for the i-th dimension.
4) False, in which case scaling is completely turned off.
Default is scaling_bounds = 0.15 (case 1)
:param rotation_bounds: (optional) same as scaling bounds but for the rotation angle, except that for cases 1
and 2, the bounds are centred on 0 rather than 1, i.e. [0+rotation_bounds[i], 0-rotation_bounds[i]].
Default is rotation_bounds = 15.
:param shearing_bounds: (optional) same as scaling bounds. Default is shearing_bounds = 0.012.
:param translation_bounds: (optional) same as scaling bounds. Default is translation_bounds = False, but we
encourage using it when cropping is deactivated (i.e. when output_shape=None in BrainGenerator).
:param enable_90_rotations: (optional) whether to rotate the input by a random angle chosen in {0, 90, 180, 270}.
This is done regardless of the value of rotation_bounds. If true, a different value is sampled for each dimension.
:param nonlin_std: (optional) maximum value of the standard deviation of the normal distribution from which we
sample the small-size SVF. Set to 0 if you wish to completely turn the elastic deformation off.
:param nonlin_scale: (optional) if nonlin_std is not False, factor between the shapes of the input tensor
and the shape of the input non-linear tensor.
:param inter_method: (optional) interpolation method when deforming the input tensor. Can be 'linear', or 'nearest'
:param prob_deform: (optional) probability to apply spatial deformation
"""
def __init__(self,
scaling_bounds=0.15,
rotation_bounds=10,
shearing_bounds=0.02,
translation_bounds=False,
enable_90_rotations=False,
nonlin_std=4.,
nonlin_scale=.0625,
inter_method='linear',
prob_deform=1,
**kwargs):
# shape attributes
self.n_inputs = 1
self.inshape = None
self.n_dims = None
self.small_shape = None
# deformation attributes
self.scaling_bounds = scaling_bounds
self.rotation_bounds = rotation_bounds
self.shearing_bounds = shearing_bounds
self.translation_bounds = translation_bounds
self.enable_90_rotations = enable_90_rotations
self.nonlin_std = nonlin_std
self.nonlin_scale = nonlin_scale
# boolean attributes
self.apply_affine_trans = (self.scaling_bounds is not False) | (self.rotation_bounds is not False) | \
(self.shearing_bounds is not False) | (self.translation_bounds is not False) | \
self.enable_90_rotations
self.apply_elastic_trans = self.nonlin_std > 0
self.prob_deform = prob_deform
# interpolation methods
self.inter_method = inter_method
super(RandomSpatialDeformation, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["scaling_bounds"] = self.scaling_bounds
config["rotation_bounds"] = self.rotation_bounds
config["shearing_bounds"] = self.shearing_bounds
config["translation_bounds"] = self.translation_bounds
config["enable_90_rotations"] = self.enable_90_rotations
config["nonlin_std"] = self.nonlin_std
config["nonlin_scale"] = self.nonlin_scale
config["inter_method"] = self.inter_method
config["prob_deform"] = self.prob_deform
return config
def build(self, input_shape):
if not isinstance(input_shape, list):
inputshape = [input_shape]
else:
self.n_inputs = len(input_shape)
inputshape = input_shape
self.inshape = inputshape[0][1:]
self.n_dims = len(self.inshape) - 1
if self.apply_elastic_trans:
self.small_shape = utils.get_resample_shape(self.inshape[:self.n_dims],
self.nonlin_scale, self.n_dims)
else:
self.small_shape = None
self.inter_method = utils.reformat_to_list(self.inter_method, length=self.n_inputs, dtype='str')
self.built = True
super(RandomSpatialDeformation, self).build(input_shape)
def call(self, inputs, **kwargs):
# reformat inputs and get its shape
if self.n_inputs < 2:
inputs = [inputs]
types = [v.dtype for v in inputs]
inputs = [tf.cast(v, dtype='float32') for v in inputs]
batchsize = tf.split(tf.shape(inputs[0]), [1, self.n_dims + 1])[0]
# initialise list of transforms to operate
list_trans = list()
# add affine deformation to inputs list
if self.apply_affine_trans:
affine_trans = utils.sample_affine_transform(batchsize,
self.n_dims,
self.rotation_bounds,
self.scaling_bounds,
self.shearing_bounds,
self.translation_bounds,
self.enable_90_rotations)
list_trans.append(affine_trans)
# prepare non-linear deformation field and add it to inputs list
if self.apply_elastic_trans:
# sample small field from normal distribution of specified std dev
trans_shape = tf.concat([batchsize, tf.convert_to_tensor(self.small_shape, dtype='int32')], axis=0)
trans_std = tf.random.uniform((1, 1), maxval=self.nonlin_std)
elastic_trans = tf.random.normal(trans_shape, stddev=trans_std)
# reshape this field to half size (for smoother SVF), integrate it, and reshape to full image size
resize_shape = [max(int(self.inshape[i] / 2), self.small_shape[i]) for i in range(self.n_dims)]
elastic_trans = nrn_layers.Resize(size=resize_shape, interp_method='linear')(elastic_trans)
elastic_trans = nrn_layers.VecInt()(elastic_trans)
elastic_trans = nrn_layers.Resize(size=self.inshape[:self.n_dims], interp_method='linear')(elastic_trans)
list_trans.append(elastic_trans)
# apply deformations and return tensors with correct dtype
if self.apply_affine_trans | self.apply_elastic_trans:
if self.prob_deform == 1:
inputs = [nrn_layers.SpatialTransformer(m)([v] + list_trans) for (m, v) in
zip(self.inter_method, inputs)]
else:
rand_trans = tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_deform))
inputs = [K.switch(rand_trans, nrn_layers.SpatialTransformer(m)([v] + list_trans), v)
for (m, v) in zip(self.inter_method, inputs)]
if self.n_inputs < 2:
return tf.cast(inputs[0], types[0])
else:
return [tf.cast(v, t) for (t, v) in zip(types, inputs)]
class RandomCrop(Layer):
"""Randomly crop all input tensors to a given shape. This cropping is applied to all channels.
The input tensors are expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param crop_shape: list with cropping shape in each dimension (excluding batch and channel dimension)
example:
if input is a tensor of shape [batchsize, 160, 160, 160, 3],
output = RandomCrop(crop_shape=[96, 128, 96])(input)
will yield an output of shape [batchsize, 96, 128, 96, 3] that is obtained by cropping with randomly selected
cropping indices.
"""
def __init__(self, crop_shape, **kwargs):
self.several_inputs = True
self.crop_max_val = None
self.crop_shape = crop_shape
self.n_dims = len(crop_shape)
self.list_n_channels = None
super(RandomCrop, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["crop_shape"] = self.crop_shape
return config
def build(self, input_shape):
if not isinstance(input_shape, list):
self.several_inputs = False
inputshape = [input_shape]
else:
inputshape = input_shape
self.crop_max_val = np.array(np.array(inputshape[0][1:self.n_dims + 1])) - np.array(self.crop_shape)
self.list_n_channels = [i[-1] for i in inputshape]
self.built = True
super(RandomCrop, self).build(input_shape)
def call(self, inputs, **kwargs):
# if one input only is provided, performs the cropping directly
if not self.several_inputs:
return tf.map_fn(self._single_slice, inputs, dtype=inputs.dtype)
# otherwise we concatenate all inputs before cropping, so that they are all cropped at the same location
else:
types = [v.dtype for v in inputs]
inputs = tf.concat([tf.cast(v, 'float32') for v in inputs], axis=-1)
inputs = tf.map_fn(self._single_slice, inputs, dtype=tf.float32)
inputs = tf.split(inputs, self.list_n_channels, axis=-1)
return [tf.cast(v, t) for (t, v) in zip(types, inputs)]
def _single_slice(self, vol):
crop_idx = tf.cast(tf.random.uniform([self.n_dims], 0, np.array(self.crop_max_val), 'float32'), dtype='int32')
crop_idx = tf.concat([crop_idx, tf.zeros([1], dtype='int32')], axis=0)
crop_size = tf.convert_to_tensor(self.crop_shape + [-1], dtype='int32')
return tf.slice(vol, begin=crop_idx, size=crop_size)
def compute_output_shape(self, input_shape):
output_shape = [tuple([None] + self.crop_shape + [v]) for v in self.list_n_channels]
return output_shape if self.several_inputs else output_shape[0]
class RandomFlip(Layer):
"""This layer randomly flips the input tensor along the specified axes with a specified probability.
It can also take multiple tensors as inputs (if they have the same shape). The same flips will be applied to all
input tensors. These are expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
If specified, this layer can also swap corresponding values. This is especially useful when flipping label maps
with different labels for right/left structures, such that the flipped label maps keep a consistent labelling.
:param axis: integer, or list of integers specifying the dimensions along which to flip.
If a list, the input tensors can be flipped simultaneously in several directions. The values in flip_axis exclude
the batch dimension (e.g. 0 will flip the tensor along the first axis after the batch dimension).
Default is None, where the tensors can be flipped along all axes (except batch and channel axes).
:param swap_labels: boolean to specify whether to swap the values of each input. Values are only swapped if an odd
number of flips is applied.
Can also be a list if several tensors are given as input.
All the inputs for which the values need to be swapped must be int32 or int64.
:param label_list: if swap_labels is True, list of all labels contained in labels. Must be ordered as follows, first
the neutral labels (i.e. non-sided), then left labels and right labels.
:param n_neutral_labels: if swap_labels is True, number of non-sided labels
:param prob: probability to flip along each specified axis
example 1:
if input is a tensor of shape (batchsize, 10, 100, 200, 3)
output = RandomFlip()(input) will randomly flip input along one of the 1st, 2nd, or 3rd axis (i.e. those with shape
10, 100, 200).
example 2:
if input is a tensor of shape (batchsize, 10, 100, 200, 3)
output = RandomFlip(flip_axis=1)(input) will randomly flip input along the 3rd axis (with shape 100), i.e. the axis
with index 1 if we don't count the batch axis.
example 3:
input = tf.convert_to_tensor(np.array([[1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 2, 2, 0],
[1, 0, 0, 0, 2, 2, 0],
[1, 0, 0, 0, 2, 2, 0],
[1, 0, 0, 0, 0, 0, 0]]))
label_list = np.array([0, 1, 2])
n_neutral_labels = 1
output = RandomFlip(flip_axis=1, swap_labels=True, label_list=label_list, n_neutral_labels=n_neutral_labels)(input)
where output will either be equal to input (bear in mind the flipping occurs with a 0.5 probability), or:
output = [[0, 0, 0, 0, 0, 0, 2],
[0, 1, 1, 0, 0, 0, 2],
[0, 1, 1, 0, 0, 0, 2],
[0, 1, 1, 0, 0, 0, 2],
[0, 0, 0, 0, 0, 0, 2]]
Note that the input must have a dtype int32 or int64 for its values to be swapped, otherwise an error will be raised
example 4:
if labels is the same as in the input of example 3, and image is a float32 image, then we can swap consistently both
the labels and the image with:
labels, image = RandomFlip(flip_axis=1, swap_labels=[True, False], label_list=label_list,
n_neutral_labels=n_neutral_labels)([labels, image]])
Note that the labels must have a dtype int32 or int64 to be swapped, otherwise an error will be raised.
This doesn't concern the image input, as its values are not swapped.
"""
def __init__(self, axis=None, swap_labels=False, label_list=None, n_neutral_labels=None, prob=0.5, **kwargs):
# shape attributes
self.several_inputs = True
self.n_dims = None
self.list_n_channels = None
# axis along which to flip
self.axis = utils.reformat_to_list(axis)
self.flip_axes = None
# whether to swap labels, and corresponding label list
self.swap_labels = utils.reformat_to_list(swap_labels)
self.label_list = label_list
self.n_neutral_labels = n_neutral_labels
self.swap_lut = None
self.prob = prob
super(RandomFlip, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["axis"] = self.axis
config["swap_labels"] = self.swap_labels
config["label_list"] = self.label_list
config["n_neutral_labels"] = self.n_neutral_labels
config["prob"] = self.prob
return config
def build(self, input_shape):
if not isinstance(input_shape, list):
self.several_inputs = False
inputshape = [input_shape]
else:
inputshape = input_shape
self.n_dims = len(inputshape[0][1:-1])
self.list_n_channels = [i[-1] for i in inputshape]
self.swap_labels = utils.reformat_to_list(self.swap_labels, length=len(inputshape))
self.flip_axes = np.arange(self.n_dims).tolist() if self.axis is None else self.axis
# create label list with swapped labels
if any(self.swap_labels):
assert (self.label_list is not None) & (self.n_neutral_labels is not None), \
'please provide a label_list, and n_neutral_labels when swapping the values of at least one input'
n_labels = len(self.label_list)
if self.n_neutral_labels == n_labels:
self.swap_labels = [False] * len(self.swap_labels)
else:
rl_split = np.split(self.label_list, [self.n_neutral_labels,
self.n_neutral_labels + int((n_labels-self.n_neutral_labels)/2)])
label_list_swap = np.concatenate((rl_split[0], rl_split[2], rl_split[1]))
swap_lut = utils.get_mapping_lut(self.label_list, label_list_swap)
self.swap_lut = tf.convert_to_tensor(swap_lut, dtype='int32')
self.built = True
super(RandomFlip, self).build(input_shape)
def call(self, inputs, **kwargs):
# convert inputs to list, and get each input type
inputs = [inputs] if not self.several_inputs else inputs
types = [v.dtype for v in inputs]
# store whether to flip along each specified dimension
batchsize = tf.split(tf.shape(inputs[0]), [1, self.n_dims + 1])[0]
size = tf.concat([batchsize, len(self.flip_axes) * tf.ones(1, dtype='int32')], axis=0)
rand_flip = K.less(tf.random.uniform(size, 0, 1), self.prob)
# swap right/left labels if we apply an odd number of flips
odd = tf.math.floormod(tf.reduce_sum(tf.cast(rand_flip, 'int32'), -1, keepdims=True), 2) != 0
swapped_inputs = list()
for i in range(len(inputs)):
if self.swap_labels[i]:
swapped_inputs.append(tf.map_fn(self._single_swap, [inputs[i], odd], dtype=types[i]))
else:
swapped_inputs.append(inputs[i])
# flip inputs and convert them back to their original type
inputs = tf.concat([tf.cast(v, 'float32') for v in swapped_inputs], axis=-1)
inputs = tf.map_fn(self._single_flip, [inputs, rand_flip], dtype=tf.float32)
inputs = tf.split(inputs, self.list_n_channels, axis=-1)
if self.several_inputs:
return [tf.cast(v, t) for (t, v) in zip(types, inputs)]
else:
return tf.cast(inputs[0], types[0])
def _single_swap(self, inputs):
return K.switch(inputs[1], tf.gather(self.swap_lut, inputs[0]), inputs[0])
@staticmethod
def _single_flip(inputs):
flip_axis = tf.where(inputs[1])
return K.switch(tf.equal(tf.size(flip_axis), 0), inputs[0], tf.reverse(inputs[0], axis=flip_axis[..., 0]))
class SampleConditionalGMM(Layer):
"""This layer generates an image by sampling a Gaussian Mixture Model conditioned on a label map given as input.
The parameters of the GMM are given as two additional inputs to the layer (means and standard deviations):
image = SampleConditionalGMM(generation_labels)([label_map, means, stds])
:param generation_labels: list of all possible label values contained in the input label maps.
Must be a list or a 1D numpy array of size N, where N is the total number of possible label values.
Layer inputs:
label_map: input label map of shape [batchsize, shape_dim1, ..., shape_dimn, n_channel].
All the values of label_map must be contained in generation_labels, but the input label_map doesn't necessarily have
to contain all the values in generation_labels.
means: tensor containing the mean values of all Gaussian distributions of the GMM.
It must be of shape [batchsize, N, n_channel], and in the same order as generation label,
i.e. the ith value of generation_labels will be associated to the ith value of means.
stds: same as means but for the standard deviations of the GMM.
"""
def __init__(self, generation_labels, **kwargs):
self.generation_labels = generation_labels
self.n_labels = None
self.n_channels = None
self.max_label = None
self.indices = None
self.shape = None
super(SampleConditionalGMM, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["generation_labels"] = self.generation_labels
return config
def build(self, input_shape):
# check n_labels and n_channels
assert len(input_shape) == 3, 'should have three inputs: labels, means, std devs (in that order).'
self.n_channels = input_shape[1][-1]
self.n_labels = len(self.generation_labels)
assert self.n_labels == input_shape[1][1], 'means should have the same number of values as generation_labels'
assert self.n_labels == input_shape[2][1], 'stds should have the same number of values as generation_labels'
# scatter parameters (to build mean/std lut)
self.max_label = np.max(self.generation_labels) + 1
indices = np.concatenate([self.generation_labels + self.max_label * i for i in range(self.n_channels)], axis=-1)
self.shape = tf.convert_to_tensor([np.max(indices) + 1], dtype='int32')
self.indices = tf.convert_to_tensor(utils.add_axis(indices, axis=[0, -1]), dtype='int32')
self.built = True
super(SampleConditionalGMM, self).build(input_shape)
def call(self, inputs, **kwargs):
# reformat labels and scatter indices
batch = tf.split(tf.shape(inputs[0]), [1, -1])[0]
tmp_indices = tf.tile(self.indices, tf.concat([batch, tf.convert_to_tensor([1, 1], dtype='int32')], axis=0))
labels = tf.concat([tf.cast(inputs[0], dtype='int32') + self.max_label * i for i in range(self.n_channels)], -1)
# build mean map
means = tf.concat([inputs[1][..., i] for i in range(self.n_channels)], 1)
tile_shape = tf.concat([batch, tf.convert_to_tensor([1, ], dtype='int32')], axis=0)
means = tf.tile(tf.expand_dims(tf.scatter_nd(tmp_indices, means, self.shape), 0), tile_shape)
means_map = tf.map_fn(lambda x: tf.gather(x[0], x[1]), [means, labels], dtype=tf.float32)
# same for stds
stds = tf.concat([inputs[2][..., i] for i in range(self.n_channels)], 1)
stds = tf.tile(tf.expand_dims(tf.scatter_nd(tmp_indices, stds, self.shape), 0), tile_shape)
stds_map = tf.map_fn(lambda x: tf.gather(x[0], x[1]), [stds, labels], dtype=tf.float32)
return stds_map * tf.random.normal(tf.shape(labels)) + means_map
def compute_output_shape(self, input_shape):
return input_shape[0] if (self.n_channels == 1) else tuple(list(input_shape[0][:-1]) + [self.n_channels])
class SampleResolution(Layer):
"""Build a random resolution tensor by sampling a uniform distribution of provided range.
You can use this layer in the following ways:
resolution = SampleConditionalGMM(min_resolution)() in this case resolution will be a tensor of shape (n_dims,),
where n_dims is the length of the min_resolution parameter (provided as a list, see below).
resolution = SampleConditionalGMM(min_resolution)(input), where input is a tensor for which the first dimension
represents the batch_size. In this case resolution will be a tensor of shape (batchsize, n_dims,).
:param min_resolution: list of length n_dims specifying the inferior bounds of the uniform distributions to
sample from for each value.
:param max_res_iso: If not None, all the values of resolution will be equal to the same value, which is randomly
sampled at each minibatch in U(min_resolution, max_res_iso).
:param max_res_aniso: If not None, we first randomly select a direction i in the range [0, n_dims-1], and we sample
a value in the corresponding uniform distribution U(min_resolution[i], max_res_aniso[i]).
The other values of resolution will be set to min_resolution.
:param prob_iso: if both max_res_iso and max_res_aniso are specified, this allows to specify the probability of
sampling an isotropic resolution (therefore using max_res_iso) with respect to anisotropic resolution
(which would use max_res_aniso).
:param prob_min: if not zero, this allows to return with the specified probability an output resolution equal
to min_resolution.
:param return_thickness: if set to True, this layer will also return a thickness value of the same shape as
resolution, which will be sampled independently for each axis from the uniform distribution
U(min_resolution, resolution).
"""
def __init__(self,
min_resolution,
max_res_iso=None,
max_res_aniso=None,
prob_iso=0.1,
prob_min=0.05,
return_thickness=True,
**kwargs):
self.min_res = min_resolution
self.max_res_iso_input = max_res_iso
self.max_res_iso = None
self.max_res_aniso_input = max_res_aniso
self.max_res_aniso = None
self.prob_iso = prob_iso
self.prob_min = prob_min
self.return_thickness = return_thickness
self.n_dims = len(self.min_res)
self.add_batchsize = False
self.min_res_tens = None
super(SampleResolution, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["min_resolution"] = self.min_res
config["max_res_iso"] = self.max_res_iso
config["max_res_aniso"] = self.max_res_aniso
config["prob_iso"] = self.prob_iso
config["prob_min"] = self.prob_min
config["return_thickness"] = self.return_thickness
return config
def build(self, input_shape):
# check maximum resolutions
assert ((self.max_res_iso_input is not None) | (self.max_res_aniso_input is not None)), \
'at least one of maximum isotropic or anisotropic resolutions must be provided, received none'
# reformat resolutions as numpy arrays
self.min_res = np.array(self.min_res)
if self.max_res_iso_input is not None:
self.max_res_iso = np.array(self.max_res_iso_input)
assert len(self.min_res) == len(self.max_res_iso), \
'min and isotropic max resolution must have the same length, ' \
'had {0} and {1}'.format(self.min_res, self.max_res_iso)
if np.array_equal(self.min_res, self.max_res_iso):
self.max_res_iso = None
if self.max_res_aniso_input is not None:
self.max_res_aniso = np.array(self.max_res_aniso_input)
assert len(self.min_res) == len(self.max_res_aniso), \
'min and anisotropic max resolution must have the same length, ' \
'had {} and {}'.format(self.min_res, self.max_res_aniso)
if np.array_equal(self.min_res, self.max_res_aniso):
self.max_res_aniso = None
# check prob iso
if (self.max_res_iso is not None) & (self.max_res_aniso is not None) & (self.prob_iso == 0):
raise Exception('prob iso is 0 while sampling either isotropic and anisotropic resolutions is enabled')
if input_shape:
self.add_batchsize = True
self.min_res_tens = tf.convert_to_tensor(self.min_res, dtype='float32')
self.built = True
super(SampleResolution, self).build(input_shape)
def call(self, inputs, **kwargs):
if not self.add_batchsize:
shape = [self.n_dims]
dim = tf.random.uniform(shape=(1, 1), minval=0, maxval=self.n_dims, dtype='int32')
mask = tf.tensor_scatter_nd_update(tf.zeros([self.n_dims], dtype='bool'), dim,
tf.convert_to_tensor([True], dtype='bool'))
else:
batch = tf.split(tf.shape(inputs), [1, -1])[0]
tile_shape = tf.concat([batch, tf.convert_to_tensor([1], dtype='int32')], axis=0)
self.min_res_tens = tf.tile(tf.expand_dims(self.min_res_tens, 0), tile_shape)
shape = tf.concat([batch, tf.convert_to_tensor([self.n_dims], dtype='int32')], axis=0)
indices = tf.stack([tf.range(0, batch[0]), tf.random.uniform(batch, 0, self.n_dims, dtype='int32')], 1)
mask = tf.tensor_scatter_nd_update(tf.zeros(shape, dtype='bool'), indices, tf.ones(batch, dtype='bool'))
# return min resolution as tensor if min=max
if (self.max_res_iso is None) & (self.max_res_aniso is None):
new_resolution = self.min_res_tens
# sample isotropic resolution only
elif (self.max_res_iso is not None) & (self.max_res_aniso is None):
new_resolution_iso = tf.random.uniform(shape, minval=self.min_res, maxval=self.max_res_iso)
new_resolution = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_min)),
self.min_res_tens,
new_resolution_iso)
# sample anisotropic resolution only
elif (self.max_res_iso is None) & (self.max_res_aniso is not None):
new_resolution_aniso = tf.random.uniform(shape, minval=self.min_res, maxval=self.max_res_aniso)
new_resolution = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_min)),
self.min_res_tens,
tf.where(mask, new_resolution_aniso, self.min_res_tens))
# sample either anisotropic or isotropic resolution
else:
new_resolution_iso = tf.random.uniform(shape, minval=self.min_res, maxval=self.max_res_iso)
new_resolution_aniso = tf.random.uniform(shape, minval=self.min_res, maxval=self.max_res_aniso)
new_resolution = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_iso)),
new_resolution_iso,
tf.where(mask, new_resolution_aniso, self.min_res_tens))
new_resolution = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_min)),
self.min_res_tens,
new_resolution)
if self.return_thickness:
return [new_resolution, tf.random.uniform(tf.shape(self.min_res_tens), self.min_res_tens, new_resolution)]
else:
return new_resolution
def compute_output_shape(self, input_shape):
if self.return_thickness:
return [(None, self.n_dims)] * 2 if self.add_batchsize else [self.n_dims] * 2
else:
return (None, self.n_dims) if self.add_batchsize else self.n_dims
class GaussianBlur(Layer):
"""Applies gaussian blur to an input image.
The input image is expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param sigma: standard deviation of the blurring kernels to apply. Can be a number, a list of length n_dims, or
a numpy array.
:param random_blur_range: (optional) if not None, this introduces a randomness in the blurring kernels, where
sigma is now multiplied by a coefficient dynamically sampled from a uniform distribution with bounds
[1/random_blur_range, random_blur_range].
:param use_mask: (optional) whether a mask of the input will be provided as an additional layer input. This is used
to mask the blurred image, and to correct for edge blurring effects.
example 1:
output = GaussianBlur(sigma=0.5)(input) will isotropically blur the input with a gaussian kernel of std 0.5.
example 2:
if input is a tensor of shape [batchsize, 10, 100, 200, 2]
output = GaussianBlur(sigma=[0.5, 1, 10])(input) will blur the input a different gaussian kernel in each dimension.
example 3:
output = GaussianBlur(sigma=0.5, random_blur_range=1.15)(input)
will blur the input a different gaussian kernel in each dimension, as each dimension will be associated with
a kernel, whose standard deviation will be uniformly sampled from [0.5/1.15; 0.5*1.15].
example 4:
output = GaussianBlur(sigma=0.5, use_mask=True)([input, mask])
will 1) blur the input a different gaussian kernel in each dimension, 2) mask the blurred image with the provided
mask, and 3) correct for edge blurring effects. If the provided mask is not of boolean type, it will be thresholded
above positive values.
"""
def __init__(self, sigma, random_blur_range=None, use_mask=False, **kwargs):
self.sigma = utils.reformat_to_list(sigma)
assert np.all(np.array(self.sigma) >= 0), 'sigma should be superior or equal to 0'
self.use_mask = use_mask
self.n_dims = None
self.n_channels = None
self.blur_range = random_blur_range
self.stride = None
self.separable = None
self.kernels = None
self.convnd = None
super(GaussianBlur, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["sigma"] = self.sigma
config["random_blur_range"] = self.blur_range
config["use_mask"] = self.use_mask
return config
def build(self, input_shape):
# get shapes
if self.use_mask:
assert len(input_shape) == 2, 'please provide a mask as second layer input when use_mask=True'
self.n_dims = len(input_shape[0]) - 2
self.n_channels = input_shape[0][-1]
else:
self.n_dims = len(input_shape) - 2
self.n_channels = input_shape[-1]
# prepare blurring kernel
self.stride = [1] * (self.n_dims + 2)
self.sigma = utils.reformat_to_list(self.sigma, length=self.n_dims)
self.separable = np.linalg.norm(np.array(self.sigma)) > 5
if self.blur_range is None: # fixed kernels
self.kernels = l2i_et.gaussian_kernel(self.sigma, separable=self.separable)
else:
self.kernels = None
# prepare convolution
self.convnd = getattr(tf.nn, 'conv%dd' % self.n_dims)
self.built = True
super(GaussianBlur, self).build(input_shape)
def call(self, inputs, **kwargs):
if self.use_mask:
image = inputs[0]
mask = tf.cast(inputs[1], 'bool')
else:
image = inputs
mask = None
# redefine the kernels at each new step when blur_range is activated
if self.blur_range is not None:
self.kernels = l2i_et.gaussian_kernel(self.sigma, blur_range=self.blur_range, separable=self.separable)
if self.separable:
for k in self.kernels:
if k is not None:
image = tf.concat([self.convnd(tf.expand_dims(image[..., n], -1), k, self.stride, 'SAME')
for n in range(self.n_channels)], -1)
if self.use_mask:
maskb = tf.cast(mask, 'float32')
maskb = tf.concat([self.convnd(tf.expand_dims(maskb[..., n], -1), k, self.stride, 'SAME')
for n in range(self.n_channels)], -1)
image = image / (maskb + K.epsilon())
image = tf.where(mask, image, tf.zeros_like(image))
else:
if any(self.sigma):
image = tf.concat([self.convnd(tf.expand_dims(image[..., n], -1), self.kernels, self.stride, 'SAME')
for n in range(self.n_channels)], -1)
if self.use_mask:
maskb = tf.cast(mask, 'float32')
maskb = tf.concat([self.convnd(tf.expand_dims(maskb[..., n], -1), self.kernels, self.stride, 'SAME')
for n in range(self.n_channels)], -1)
image = image / (maskb + K.epsilon())
image = tf.where(mask, image, tf.zeros_like(image))
return image
class DynamicGaussianBlur(Layer):
"""Applies gaussian blur to an input image, where the standard deviation of the blurring kernel is provided as a
layer input, which enables to perform dynamic blurring (i.e. the blurring kernel can vary at each minibatch).
:param max_sigma: maximum value of the standard deviation that will be provided as input. This is used to compute
the size of the blurring kernels. It must be provided as a list of length n_dims.
:param random_blur_range: (optional) if not None, this introduces a randomness in the blurring kernels, where
sigma is now multiplied by a coefficient dynamically sampled from a uniform distribution with bounds
[1/random_blur_range, random_blur_range].
example:
blurred_image = DynamicGaussianBlur(max_sigma=[5.]*3, random_blurring_range=1.15)([image, sigma])
will return a blurred version of image, where the standard deviation of each dimension (given as a tensor, and with
values lower than 5 for each axis) is multiplied by a random coefficient uniformly sampled from [1/1.15; 1.15].
"""
def __init__(self, max_sigma, random_blur_range=None, **kwargs):
self.max_sigma = max_sigma
self.n_dims = None
self.n_channels = None
self.convnd = None
self.blur_range = random_blur_range
self.separable = None
super(DynamicGaussianBlur, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["max_sigma"] = self.max_sigma
config["random_blur_range"] = self.blur_range
return config
def build(self, input_shape):
assert len(input_shape) == 2, 'sigma should be provided as an input tensor for dynamic blurring'
self.n_dims = len(input_shape[0]) - 2
self.n_channels = input_shape[0][-1]
self.convnd = getattr(tf.nn, 'conv%dd' % self.n_dims)
self.max_sigma = utils.reformat_to_list(self.max_sigma, length=self.n_dims)
self.separable = np.linalg.norm(np.array(self.max_sigma)) > 5
self.built = True
super(DynamicGaussianBlur, self).build(input_shape)
def call(self, inputs, **kwargs):
image = inputs[0]
sigma = inputs[-1]
kernels = l2i_et.gaussian_kernel(sigma, self.max_sigma, self.blur_range, self.separable)
if self.separable:
for kernel in kernels:
image = tf.map_fn(self._single_blur, [image, kernel], dtype=tf.float32)
else:
image = tf.map_fn(self._single_blur, [image, kernels], dtype=tf.float32)
return image
def _single_blur(self, inputs):
if self.n_channels > 1:
split_channels = tf.split(inputs[0], [1] * self.n_channels, axis=-1)
blurred_channel = list()
for channel in split_channels:
blurred = self.convnd(tf.expand_dims(channel, 0), inputs[1], [1] * (self.n_dims + 2), padding='SAME')
blurred_channel.append(tf.squeeze(blurred, axis=0))
output = tf.concat(blurred_channel, -1)
else:
output = self.convnd(tf.expand_dims(inputs[0], 0), inputs[1], [1] * (self.n_dims + 2), padding='SAME')
output = tf.squeeze(output, axis=0)
return output
class MimicAcquisition(Layer):
"""
Layer that takes an image as input, and simulates data that has been acquired at low resolution.
The output is obtained by resampling the input twice:
- first at a resolution given as an input (i.e. the "acquisition" resolution),
- then at the output resolution (specified output shape).
The input tensor is expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param volume_res: resolution of the provided inputs. Must be a 1-D numpy array with n_dims elements.
:param min_subsample_res: lower bound of the acquisition resolutions to mimic (i.e. the input resolution must have
values higher than min-subsample_res).
:param resample_shape: shape of the output tensor
:param build_dist_map: whether to return distance maps as outputs. These indicate the distance between each voxel
and the nearest non-interpolated voxel (during the second resampling).
:param prob_noise: probability to apply noise injection
example 1:
im_res = [1., 1., 1.]
low_res = [1., 1., 3.]
res = tf.convert_to_tensor([1., 1., 4.5])
image is a tensor of shape (None, 256, 256, 256, 3)
resample_shape = [256, 256, 256]
output = MimicAcquisition(im_res, low_res, resample_shape)([image, res])
output will be a tensor of shape (None, 256, 256, 256, 3), obtained by downsampling image to [1., 1., 4.5].
and re-upsampling it at initial resolution (because resample_shape is equal to the input shape). In this example all
examples of the batch will be downsampled to the same resolution (because res has no batch dimension).
Note that the provided res must have higher values than min_low_res.
example 2:
im_res = [1., 1., 1.]
min_low_res = [1., 1., 1.]
res is a tensor of shape (None, 3), obtained for example by using the SampleResolution layer (see above).
image is a tensor of shape (None, 256, 256, 256, 1)
resample_shape = [128, 128, 128]
output = MimicAcquisition(im_res, low_res, resample_shape)([image, res])
output will be a tensor of shape (None, 128, 128, 128, 1), obtained by downsampling each examples of the batch to
the matching resolution in res, and resampling them all to half the initial resolution.
Note that the provided res must have higher values than min_low_res.
"""
def __init__(self, volume_res, min_subsample_res, resample_shape, build_dist_map=False,
noise_std=0, prob_noise=0.95, **kwargs):
# resolutions and dimensions
self.volume_res = volume_res
self.min_subsample_res = min_subsample_res
self.n_dims = len(self.volume_res)
self.n_channels = None
self.add_batchsize = None
# noise
self.noise_std = noise_std
self.prob_noise = prob_noise
# input and output shapes
self.inshape = None
self.resample_shape = resample_shape
# meshgrids for resampling
self.down_grid = None
self.up_grid = None
# whether to return a map indicating the distance from the interpolated voxels, to acquired ones.
self.build_dist_map = build_dist_map
super(MimicAcquisition, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["volume_res"] = self.volume_res
config["min_subsample_res"] = self.min_subsample_res
config["resample_shape"] = self.resample_shape
config["build_dist_map"] = self.build_dist_map
config["noise_std"] = self.noise_std
config["prob_noise"] = self.prob_noise
return config
def build(self, input_shape):
# set up input shape and acquisition shape
self.inshape = input_shape[0][1:]
self.n_channels = input_shape[0][-1]
self.add_batchsize = False if (input_shape[1][0] is None) else True
down_tensor_shape = np.int32(np.array(self.inshape[:-1]) * self.volume_res / self.min_subsample_res)
# build interpolation meshgrids
self.down_grid = tf.expand_dims(tf.stack(nrn_utils.volshape_to_ndgrid(down_tensor_shape), -1), axis=0)
self.up_grid = tf.expand_dims(tf.stack(nrn_utils.volshape_to_ndgrid(self.resample_shape), -1), axis=0)
self.built = True
super(MimicAcquisition, self).build(input_shape)
def call(self, inputs, **kwargs):
# sort inputs
assert len(inputs) == 2, 'inputs must have two items, the tensor to resample, and the downsampling resolution'
vol = inputs[0]
subsample_res = tf.cast(inputs[1], dtype='float32')
vol = K.reshape(vol, [-1, *self.inshape]) # necessary for multi_gpu models
batchsize = tf.split(tf.shape(vol), [1, -1])[0]
tile_shape = tf.concat([batchsize, tf.ones([1], dtype='int32')], 0)
# get downsampling and upsampling factors
if self.add_batchsize:
subsample_res = tf.tile(tf.expand_dims(subsample_res, 0), tile_shape)
down_shape = tf.cast(tf.convert_to_tensor(np.array(self.inshape[:-1]) * self.volume_res, dtype='float32') /
subsample_res, dtype='int32')
down_zoom_factor = tf.cast(down_shape / tf.convert_to_tensor(self.inshape[:-1]), dtype='float32')
up_zoom_factor = tf.cast(tf.convert_to_tensor(self.resample_shape, dtype='int32') / down_shape, dtype='float32')
# downsample
down_loc = tf.tile(self.down_grid, tf.concat([batchsize, tf.ones([self.n_dims + 1], dtype='int32')], 0))
down_loc = tf.cast(down_loc, 'float32') / l2i_et.expand_dims(down_zoom_factor, axis=[1] * self.n_dims)
inshape_tens = tf.tile(tf.expand_dims(tf.convert_to_tensor(self.inshape[:-1]), 0), tile_shape)
inshape_tens = l2i_et.expand_dims(inshape_tens, axis=[1] * self.n_dims)
down_loc = K.clip(down_loc, 0., tf.cast(inshape_tens, 'float32'))
vol = tf.map_fn(self._single_down_interpn, [vol, down_loc], tf.float32)
# add noise with predefined probability
if self.noise_std > 0:
sample_shape = tf.concat([batchsize, tf.ones([self.n_dims], dtype='int32'),
self.n_channels * tf.ones([1], dtype='int32')], 0)
noise = tf.random.normal(tf.shape(vol), stddev=tf.random.uniform(sample_shape, maxval=self.noise_std))
if self.prob_noise == 1:
vol += noise
else:
vol = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_noise)), vol + noise, vol)
# upsample
up_loc = tf.tile(self.up_grid, tf.concat([batchsize, tf.ones([self.n_dims + 1], dtype='int32')], axis=0))
up_loc = tf.cast(up_loc, 'float32') / l2i_et.expand_dims(up_zoom_factor, axis=[1] * self.n_dims)
vol = tf.map_fn(self._single_up_interpn, [vol, up_loc], tf.float32)
# return upsampled volume
if not self.build_dist_map:
return vol
# return upsampled volumes with distance maps
else:
# get grid points
floor = tf.math.floor(up_loc)
ceil = tf.math.ceil(up_loc)
# get distances of every voxel to higher and lower grid points for every dimension
f_dist = up_loc - floor
c_dist = ceil - up_loc
# keep minimum 1d distances, and compute 3d distance to nearest grid point
dist = tf.math.minimum(f_dist, c_dist) * l2i_et.expand_dims(subsample_res, axis=[1] * self.n_dims)
dist = tf.math.sqrt(tf.math.reduce_sum(tf.math.square(dist), axis=-1, keepdims=True))
return [vol, dist]
@staticmethod
def _single_down_interpn(inputs):
return nrn_utils.interpn(inputs[0], inputs[1], interp_method='nearest')
@staticmethod
def _single_up_interpn(inputs):
return nrn_utils.interpn(inputs[0], inputs[1], interp_method='linear')
def compute_output_shape(self, input_shape):
output_shape = tuple([None] + self.resample_shape + [input_shape[0][-1]])
return [output_shape] * 2 if self.build_dist_map else output_shape
class BiasFieldCorruption(Layer):
"""This layer applies a smooth random bias field to the input by applying the following steps:
1) we first sample a value for the standard deviation of a centred normal distribution
2) a small-size SVF is sampled from this normal distribution
3) the small SVF is then resized with trilinear interpolation to image size
4) it is rescaled to positive values by taking the voxel-wise exponential
5) it is multiplied to the input tensor.
The input tensor is expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param bias_field_std: maximum value of the standard deviation sampled in 1 (it will be sampled from the range
[0, bias_field_std])
:param bias_scale: ratio between the shape of the input tensor and the shape of the sampled SVF.
:param same_bias_for_all_channels: whether to apply the same bias field to all the channels of the input tensor.
:param prob: probability to apply this bias field corruption.
"""
def __init__(self, bias_field_std=.5, bias_scale=.025, same_bias_for_all_channels=False, prob=0.95, **kwargs):
# input shape
self.several_inputs = False
self.inshape = None
self.n_dims = None
self.n_channels = None
# sampling shape
self.std_shape = None
self.small_bias_shape = None
# bias field parameters
self.bias_field_std = bias_field_std
self.bias_scale = bias_scale
self.same_bias_for_all_channels = same_bias_for_all_channels
self.prob = prob
super(BiasFieldCorruption, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["bias_field_std"] = self.bias_field_std
config["bias_scale"] = self.bias_scale
config["same_bias_for_all_channels"] = self.same_bias_for_all_channels
config["prob"] = self.prob
return config
def build(self, input_shape):
# input shape
if isinstance(input_shape, list):
self.several_inputs = True
self.inshape = input_shape
else:
self.inshape = [input_shape]
self.n_dims = len(self.inshape[0]) - 2
self.n_channels = self.inshape[0][-1]
# sampling shapes
self.std_shape = [1] * (self.n_dims + 1)
self.small_bias_shape = utils.get_resample_shape(self.inshape[0][1:self.n_dims + 1], self.bias_scale, 1)
if not self.same_bias_for_all_channels:
self.std_shape[-1] = self.n_channels
self.small_bias_shape[-1] = self.n_channels
self.built = True
super(BiasFieldCorruption, self).build(input_shape)
def call(self, inputs, **kwargs):
if not self.several_inputs:
inputs = [inputs]
if self.bias_field_std > 0:
# sampling shapes
batchsize = tf.split(tf.shape(inputs[0]), [1, -1])[0]
std_shape = tf.concat([batchsize, tf.convert_to_tensor(self.std_shape, dtype='int32')], 0)
bias_shape = tf.concat([batchsize, tf.convert_to_tensor(self.small_bias_shape, dtype='int32')], axis=0)
# sample small bias field
bias_field = tf.random.normal(bias_shape, stddev=tf.random.uniform(std_shape, maxval=self.bias_field_std))
# resize bias field and take exponential
bias_field = nrn_layers.Resize(size=self.inshape[0][1:self.n_dims + 1], interp_method='linear')(bias_field)
bias_field = tf.math.exp(bias_field)
# apply bias field with predefined probability
if self.prob == 1:
return [tf.math.multiply(bias_field, v) for v in inputs]
else:
rand_trans = tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob))
if self.several_inputs:
return [K.switch(rand_trans, tf.math.multiply(bias_field, v), v) for v in inputs]
else:
return K.switch(rand_trans, tf.math.multiply(bias_field, inputs[0]), inputs[0])
else:
return inputs
class IntensityAugmentation(Layer):
"""This layer enables to augment the intensities of the input tensor, as well as to apply min_max normalisation.
The following steps are applied (all are optional):
1) white noise corruption, with a randomly sampled std dev.
2) clip the input between two values
3) min-max normalisation
4) gamma augmentation (i.e. voxel-wise exponentiation by a randomly sampled power)
The input tensor is expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param noise_std: maximum value of the standard deviation of the Gaussian white noise used in 1 (it will be sampled
from the range [0, noise_std]). Set to 0 to skip this step.
:param clip: clip the input tensor between the given values. Can either be: a number (in which case we clip between
0 and the given value), or a list or a numpy array with two elements. Default is 0, where no clipping occurs.
:param normalise: whether to apply min-max normalisation, to normalise between 0 and 1. Default is True.
:param norm_perc: percentiles (between 0 and 1) of the sorted intensity values for robust normalisation. Can be:
a number (in which case the robust minimum is the provided percentile of sorted values, and the maximum is the
1 - norm_perc percentile), or a list/numpy array of 2 elements (percentiles for the minimum and maximum values).
The minimum and maximum values are computed separately for each channel if separate_channels is True.
Default is 0, where we simply take the minimum and maximum values.
:param gamma_std: standard deviation of the normal distribution from which we sample gamma (in log domain).
Default is 0, where no gamma augmentation occurs.
:param contrast_inversion: whether to perform contrast inversion (i.e. 1 - x). If True, this is performed randomly
for each element of the batch, as well as for each channel.
:param separate_channels: whether to augment all channels separately. Default is True.
:param prob_noise: probability to apply noise injection
:param prob_gamma: probability to apply gamma augmentation
"""
def __init__(self, noise_std=0, clip=0, normalise=True, norm_perc=0, gamma_std=0, contrast_inversion=False,
separate_channels=True, prob_noise=0.95, prob_gamma=1, **kwargs):
# shape attributes
self.n_dims = None
self.n_channels = None
self.flatten_shape = None
self.expand_minmax_dim = None
self.one = None
# inputs
self.noise_std = noise_std
self.clip = clip
self.clip_values = None
self.normalise = normalise
self.norm_perc = norm_perc
self.perc = None
self.gamma_std = gamma_std
self.separate_channels = separate_channels
self.contrast_inversion = contrast_inversion
self.prob_noise = prob_noise
self.prob_gamma = prob_gamma
super(IntensityAugmentation, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["noise_std"] = self.noise_std
config["clip"] = self.clip
config["normalise"] = self.normalise
config["norm_perc"] = self.norm_perc
config["gamma_std"] = self.gamma_std
config["separate_channels"] = self.separate_channels
config["prob_noise"] = self.prob_noise
config["prob_gamma"] = self.prob_gamma
return config
def build(self, input_shape):
self.n_dims = len(input_shape) - 2
self.n_channels = input_shape[-1]
self.flatten_shape = np.prod(np.array(input_shape[1:-1]))
self.flatten_shape = self.flatten_shape * self.n_channels if not self.separate_channels else self.flatten_shape
self.expand_minmax_dim = self.n_dims if self.separate_channels else self.n_dims + 1
self.one = tf.ones([1], dtype='int32')
if self.clip:
self.clip_values = utils.reformat_to_list(self.clip)
self.clip_values = self.clip_values if len(self.clip_values) == 2 else [0, self.clip_values[0]]
else:
self.clip_values = None
if self.norm_perc:
self.perc = utils.reformat_to_list(self.norm_perc)
self.perc = self.perc if len(self.perc) == 2 else [self.perc[0], 1 - self.perc[0]]
else:
self.perc = None
self.built = True
super(IntensityAugmentation, self).build(input_shape)
def call(self, inputs, **kwargs):
# prepare shape for sampling the noise and gamma std dev (depending on whether we augment channels separately)
batchsize = tf.split(tf.shape(inputs), [1, -1])[0]
if (self.noise_std > 0) | (self.gamma_std > 0) | self.contrast_inversion:
sample_shape = tf.concat([batchsize, tf.ones([self.n_dims], dtype='int32')], 0)
if self.separate_channels:
sample_shape = tf.concat([sample_shape, self.n_channels * self.one], 0)
else:
sample_shape = tf.concat([sample_shape, self.one], 0)
else:
sample_shape = None
# add noise with predefined probability
if self.noise_std > 0:
noise_stddev = tf.random.uniform(sample_shape, maxval=self.noise_std)
if self.separate_channels:
noise = tf.random.normal(tf.shape(inputs), stddev=noise_stddev)
else:
noise = tf.random.normal(tf.shape(tf.split(inputs, [1, -1], -1)[0]), stddev=noise_stddev)
noise = tf.tile(noise, tf.convert_to_tensor([1] * (self.n_dims + 1) + [self.n_channels]))
if self.prob_noise == 1:
inputs = inputs + noise
else:
inputs = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_noise)),
inputs + noise, inputs)
# clip images to given values
if self.clip_values is not None:
inputs = K.clip(inputs, self.clip_values[0], self.clip_values[1])
# normalise
if self.normalise:
# define robust min and max by sorting values and taking percentile
if self.perc is not None:
if self.separate_channels:
shape = tf.concat([batchsize, self.flatten_shape * self.one, self.n_channels * self.one], 0)
else:
shape = tf.concat([batchsize, self.flatten_shape * self.one], 0)
intensities = tf.sort(tf.reshape(inputs, shape), axis=1)
m = intensities[:, max(int(self.perc[0] * self.flatten_shape), 0), ...]
M = intensities[:, min(int(self.perc[1] * self.flatten_shape), self.flatten_shape - 1), ...]
# simple min and max
else:
m = K.min(inputs, axis=list(range(1, self.expand_minmax_dim + 1)))
M = K.max(inputs, axis=list(range(1, self.expand_minmax_dim + 1)))
# normalise
m = l2i_et.expand_dims(m, axis=[1] * self.expand_minmax_dim)
M = l2i_et.expand_dims(M, axis=[1] * self.expand_minmax_dim)
inputs = tf.clip_by_value(inputs, m, M)
inputs = (inputs - m) / (M - m + K.epsilon())
# apply voxel-wise exponentiation with predefined probability
if self.gamma_std > 0:
gamma = tf.random.normal(sample_shape, stddev=self.gamma_std)
if self.prob_gamma == 1:
inputs = tf.math.pow(inputs, tf.math.exp(gamma))
else:
inputs = K.switch(tf.squeeze(K.less(tf.random.uniform([1], 0, 1), self.prob_gamma)),
tf.math.pow(inputs, tf.math.exp(gamma)), inputs)
# apply random contrast inversion
if self.contrast_inversion:
rand_invert = tf.less(tf.random.uniform(sample_shape, maxval=1), 0.5)
split_channels = tf.split(inputs, [1] * self.n_channels, axis=-1)
split_rand_invert = tf.split(rand_invert, [1] * self.n_channels, axis=-1)
inverted_channel = list()
for (channel, invert) in zip(split_channels, split_rand_invert):
inverted_channel.append(tf.map_fn(self._single_invert, [channel, invert], dtype=channel.dtype))
inputs = tf.concat(inverted_channel, -1)
return inputs
@staticmethod
def _single_invert(inputs):
return K.switch(tf.squeeze(inputs[1]), 1 - inputs[0], inputs[0])
class DiceLoss(Layer):
"""This layer computes the soft Dice loss between two tensors.
These tensors are expected to have the same shape (one-hot encoding) [batch, size_dim1, ..., size_dimN, n_labels].
The first input tensor is the GT and the second is the prediction: dice_loss = DiceLoss()([gt, pred])
:param class_weights: (optional) if given, the loss is obtained by a weighted average of the Dice across labels.
Must be a sequence or 1d numpy array of length n_labels. Can also be -1, where the weights are dynamically set to
the inverse of the volume of each label in the ground truth.
:param boundary_weights: (optional) bonus weight that we apply to the voxels close to boundaries between structures
when computing the loss. Default is 0 where no boundary weighting is applied.
:param boundary_dist: (optional) if boundary_weight is not 0, the extra boundary weighting is applied to all voxels
within this distance to a region boundary. Default is 3.
:param skip_background: (optional) whether to skip boundary weighting for the background class, as this may be
redundant when we have several labels. This is only used if boundary_weight is not 0.
:param enable_checks: (optional) whether to make sure that the 2 input tensors are probabilistic (i.e. the label
probabilities sum to 1 at each voxel location). Default is True.
"""
def __init__(self,
class_weights=None,
boundary_weights=0,
boundary_dist=3,
skip_background=True,
enable_checks=True,
**kwargs):
self.class_weights = class_weights
self.dynamic_weighting = False
self.class_weights_tens = None
self.boundary_weights = boundary_weights
self.boundary_dist = boundary_dist
self.skip_background = skip_background
self.enable_checks = enable_checks
self.spatial_axes = None
self.avg_pooling_layer = None
super(DiceLoss, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["class_weights"] = self.class_weights
config["boundary_weights"] = self.boundary_weights
config["boundary_dist"] = self.boundary_dist
config["skip_background"] = self.skip_background
config["enable_checks"] = self.enable_checks
return config
def build(self, input_shape):
# get shape
assert len(input_shape) == 2, 'DiceLoss expects 2 inputs to compute the Dice loss.'
assert input_shape[0] == input_shape[1], 'the two inputs must have the same shape.'
inshape = input_shape[0][1:]
n_dims = len(inshape[:-1])
n_labels = inshape[-1]
self.spatial_axes = list(range(1, n_dims + 1))
self.avg_pooling_layer = getattr(keras.layers, 'AvgPool%dD' % n_dims)
self.skip_background = False if n_labels == 1 else self.skip_background
# build tensor with class weights
if self.class_weights is not None:
if self.class_weights == -1:
self.dynamic_weighting = True
else:
class_weights_tens = utils.reformat_to_list(self.class_weights, n_labels)
class_weights_tens = tf.convert_to_tensor(class_weights_tens, 'float32')
self.class_weights_tens = l2i_et.expand_dims(class_weights_tens, 0)
self.built = True
super(DiceLoss, self).build(input_shape)
def call(self, inputs, **kwargs):
# make sure tensors are probabilistic
gt = inputs[0]
pred = inputs[1]
if self.enable_checks: # disabling is useful to, e.g., use incomplete label maps
gt = K.clip(gt / (tf.math.reduce_sum(gt, axis=-1, keepdims=True) + tf.keras.backend.epsilon()), 0, 1)
pred = K.clip(pred / (tf.math.reduce_sum(pred, axis=-1, keepdims=True) + tf.keras.backend.epsilon()), 0, 1)
# compute dice loss for each label
top = 2 * gt * pred
bottom = tf.math.square(gt) + tf.math.square(pred)
# apply boundary weighting (ie voxels close to region boundaries will be counted several times to compute Dice)
if self.boundary_weights:
avg = self.avg_pooling_layer(pool_size=2 * self.boundary_dist + 1, strides=1, padding='same')(gt)
boundaries = tf.cast(avg > 0., 'float32') * tf.cast(avg < (1 / len(self.spatial_axes) - 1e-4), 'float32')
if self.skip_background:
boundaries_channels = tf.unstack(boundaries, axis=-1)
boundaries = tf.stack([tf.zeros_like(boundaries_channels[0])] + boundaries_channels[1:], axis=-1)
boundary_weights_tensor = 1 + self.boundary_weights * boundaries
top *= boundary_weights_tensor
bottom *= boundary_weights_tensor
else:
boundary_weights_tensor = None
# compute loss
top = tf.math.reduce_sum(top, self.spatial_axes)
bottom = tf.math.reduce_sum(bottom, self.spatial_axes)
dice = (top + tf.keras.backend.epsilon()) / (bottom + tf.keras.backend.epsilon())
loss = 1 - dice
# apply class weighting across labels. In this case loss will have shape (batch), otherwise (batch, n_labels).
if self.dynamic_weighting: # the weight of a class is the inverse of its volume in the gt
if boundary_weights_tensor is not None: # we account for the boundary weighting to compute volume
self.class_weights_tens = 1 / tf.reduce_sum(gt * boundary_weights_tensor, self.spatial_axes)
else:
self.class_weights_tens = 1 / tf.reduce_sum(gt, self.spatial_axes)
if self.class_weights_tens is not None:
self. class_weights_tens /= tf.reduce_sum(self.class_weights_tens, -1)
loss = tf.reduce_sum(loss * self.class_weights_tens, -1)
return tf.math.reduce_mean(loss)
def compute_output_shape(self, input_shape):
return [[]]
class WeightedL2Loss(Layer):
"""This layer computes a L2 loss weighted by a specified factor (target_value) between two tensors.
This is designed to be used on the layer before the softmax.
The tensors are expected to have the same shape [batchsize, size_dim1, ..., size_dimN, n_labels].
The first input tensor is the GT and the second is the prediction: wl2_loss = WeightedL2Loss()([gt, pred])
:param target_value: target value for the layer before softmax: target_value when gt = 1, -target_value when gt = 0.
"""
def __init__(self, target_value=5, **kwargs):
self.target_value = target_value
self.n_labels = None
super(WeightedL2Loss, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["target_value"] = self.target_value
return config
def build(self, input_shape):
assert len(input_shape) == 2, 'DiceLoss expects 2 inputs to compute the Dice loss.'
assert input_shape[0] == input_shape[1], 'the two inputs must have the same shape.'
self.n_labels = input_shape[0][-1]
self.built = True
super(WeightedL2Loss, self).build(input_shape)
def call(self, inputs, **kwargs):
gt = inputs[0]
pred = inputs[1]
weights = tf.expand_dims(1 - gt[..., 0] + 1e-8, -1)
return K.sum(weights * K.square(pred - self.target_value * (2 * gt - 1))) / (K.sum(weights) * self.n_labels)
def compute_output_shape(self, input_shape):
return [[]]
class CrossEntropyLoss(Layer):
"""This layer computes the cross-entropy loss between two tensors.
These tensors are expected to have the same shape (one-hot encoding) [batch, size_dim1, ..., size_dimN, n_labels].
The first input tensor is the GT and the second is the prediction: ce_loss = CrossEntropyLoss()([gt, pred])
:param class_weights: (optional) if given, the loss is obtained by a weighted average of the Dice across labels.
Must be a sequence or 1d numpy array of length n_labels. Can also be -1, where the weights are dynamically set to
the inverse of the volume of each label in the ground truth.
:param boundary_weights: (optional) bonus weight that we apply to the voxels close to boundaries between structures
when computing the loss. Default is 0 where no boundary weighting is applied.
:param boundary_dist: (optional) if boundary_weight is not 0, the extra boundary weighting is applied to all voxels
within this distance to a region boundary. Default is 3.
:param skip_background: (optional) whether to skip boundary weighting for the background class, as this may be
redundant when we have several labels. This is only used if boundary_weight is not 0.
:param enable_checks: (optional) whether to make sure that the 2 input tensors are probabilistic (i.e. the label
probabilities sum to 1 at each voxel location). Default is True.
"""
def __init__(self,
class_weights=None,
boundary_weights=0,
boundary_dist=3,
skip_background=True,
enable_checks=True,
**kwargs):
self.class_weights = class_weights
self.dynamic_weighting = False
self.class_weights_tens = None
self.boundary_weights = boundary_weights
self.boundary_dist = boundary_dist
self.skip_background = skip_background
self.enable_checks = enable_checks
self.spatial_axes = None
self.avg_pooling_layer = None
super(CrossEntropyLoss, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["class_weights"] = self.class_weights
config["boundary_weights"] = self.boundary_weights
config["boundary_dist"] = self.boundary_dist
config["skip_background"] = self.skip_background
config["enable_checks"] = self.enable_checks
return config
def build(self, input_shape):
# get shape
assert len(input_shape) == 2, 'CrossEntropy expects 2 inputs to compute the Dice loss.'
assert input_shape[0] == input_shape[1], 'the two inputs must have the same shape.'
inshape = input_shape[0][1:]
n_dims = len(inshape[:-1])
n_labels = inshape[-1]
self.spatial_axes = list(range(1, n_dims + 1))
self.avg_pooling_layer = getattr(keras.layers, 'AvgPool%dD' % n_dims)
self.skip_background = False if n_labels == 1 else self.skip_background
# build tensor with class weights
if self.class_weights is not None:
if self.class_weights == -1:
self.dynamic_weighting = True
else:
class_weights_tens = utils.reformat_to_list(self.class_weights, n_labels)
class_weights_tens = tf.convert_to_tensor(class_weights_tens, 'float32')
self.class_weights_tens = l2i_et.expand_dims(class_weights_tens, [0] * (1 + n_dims))
self.built = True
super(CrossEntropyLoss, self).build(input_shape)
def call(self, inputs, **kwargs):
# make sure tensors are probabilistic
gt = inputs[0]
pred = inputs[1]
if self.enable_checks: # disabling is useful to, e.g., use incomplete label maps
gt = K.clip(gt / (tf.math.reduce_sum(gt, axis=-1, keepdims=True) + tf.keras.backend.epsilon()), 0, 1)
pred = pred / (tf.math.reduce_sum(pred, axis=-1, keepdims=True) + tf.keras.backend.epsilon())
pred = K.clip(pred, tf.keras.backend.epsilon(), 1 - tf.keras.backend.epsilon()) # to avoid log(0)
# compare prediction/target, ce has the same shape has the input tensors
ce = -gt * tf.math.log(pred)
# apply boundary weighting (ie voxels close to region boundaries will be counted several times to compute Dice)
if self.boundary_weights:
avg = self.avg_pooling_layer(pool_size=2 * self.boundary_dist + 1, strides=1, padding='same')(gt)
boundaries = tf.cast(avg > 0., 'float32') * tf.cast(avg < (1 / len(self.spatial_axes) - 1e-4), 'float32')
if self.skip_background:
boundaries_channels = tf.unstack(boundaries, axis=-1)
boundaries = tf.stack([tf.zeros_like(boundaries_channels[0])] + boundaries_channels[1:], axis=-1)
boundary_weights_tensor = 1 + self.boundary_weights * boundaries
ce *= boundary_weights_tensor
else:
boundary_weights_tensor = None
# apply class weighting across labels. By the end of this, ce still has the same shape has the input tensors.
if self.dynamic_weighting: # the weight of a class is the inverse of its volume in the gt
if boundary_weights_tensor is not None: # we account for the boundary weighting to compute volume
self.class_weights_tens = 1 / tf.reduce_sum(gt * boundary_weights_tensor, self.spatial_axes, True)
else:
self.class_weights_tens = 1 / tf.reduce_sum(gt, self.spatial_axes)
if self.class_weights_tens is not None:
self.class_weights_tens /= tf.reduce_sum(self.class_weights_tens, -1)
ce = tf.reduce_sum(ce * self.class_weights_tens, -1)
# sum along label axis, and take the mean along spatial dimensions
ce = tf.math.reduce_mean(tf.math.reduce_sum(ce, axis=-1))
return ce
def compute_output_shape(self, input_shape):
return [[]]
class MomentLoss(Layer):
"""This layer computes a moment loss between two tensors. Specifically, it computes the distance between the centres
of gravity for all the channels of the two tensors, and then returns a value averaged across all channels.
These tensors are expected to have the same shape [batch, size_dim1, ..., size_dimN, n_channels].
The first input tensor is the GT and the second is the prediction: moment_loss = MomentLoss()([gt, pred])
:param class_weights: (optional) if given, the loss is obtained by a weighted average of the Dice across labels.
Must be a sequence or 1d numpy array of length n_labels. Can also be -1, where the weights are dynamically set to
the inverse of the volume of each label in the ground truth.
:param enable_checks: (optional) whether to make sure that the 2 input tensors are probabilistic (i.e. the label
probabilities sum to 1 at each voxel location). Default is True.
"""
def __init__(self, class_weights=None, enable_checks=False, **kwargs):
self.class_weights = class_weights
self.dynamic_weighting = False
self.class_weights_tens = None
self.enable_checks = enable_checks
self.spatial_axes = None
self.coordinates = None
super(MomentLoss, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["class_weights"] = self.class_weights
config["enable_checks"] = self.enable_checks
return config
def build(self, input_shape):
# get shape
assert len(input_shape) == 2, 'MomentLoss expects 2 inputs to compute the Dice loss.'
assert input_shape[0] == input_shape[1], 'the two inputs must have the same shape.'
inshape = input_shape[0][1:]
n_dims = len(inshape[:-1])
n_labels = inshape[-1]
self.spatial_axes = list(range(1, n_dims + 1))
# build coordinate meshgrid of size (1, dim1, dim2, ..., dimN, ndim, nchan)
self.coordinates = tf.stack(nrn_utils.volshape_to_ndgrid(inshape[:-1]), -1)
self.coordinates = tf.cast(l2i_et.expand_dims(tf.stack([self.coordinates] * n_labels, -1), 0), 'float32')
# build tensor with class weights
if self.class_weights is not None:
if self.class_weights == -1:
self.dynamic_weighting = True
else:
class_weights_tens = utils.reformat_to_list(self.class_weights, n_labels)
class_weights_tens = tf.convert_to_tensor(class_weights_tens, 'float32')
self.class_weights_tens = l2i_et.expand_dims(class_weights_tens, 0)
self.built = True
super(MomentLoss, self).build(input_shape)
def call(self, inputs, **kwargs):
# make sure tensors are probabilistic
gt = inputs[0] # (B, dim1, dim2, ..., dimN, nchan)
pred = inputs[1]
if self.enable_checks: # disabling is useful to, e.g., use incomplete label maps
gt = gt / (tf.math.reduce_sum(gt, axis=-1, keepdims=True) + tf.keras.backend.epsilon())
pred = pred / (tf.math.reduce_sum(pred, axis=-1, keepdims=True) + tf.keras.backend.epsilon())
# compute loss
gt_mean_coordinates = self._mean_coordinates(gt) # (B, ndim, nchan)
pred_mean_coordinates = self._mean_coordinates(pred)
loss = tf.math.sqrt(tf.reduce_sum(tf.square(pred_mean_coordinates - gt_mean_coordinates), axis=1)) # (B, nchan)
# apply class weighting across labels. In this case loss will have shape (batch), otherwise (batch, n_labels).
if self.dynamic_weighting: # the weight of a class is the inverse of its volume in the gt
self.class_weights_tens = 1 / tf.reduce_sum(gt, self.spatial_axes)
if self.class_weights_tens is not None:
self.class_weights_tens /= tf.reduce_sum(self.class_weights_tens, -1)
loss = tf.reduce_sum(loss * self.class_weights_tens, -1)
return tf.math.reduce_mean(loss)
def _mean_coordinates(self, tensor):
tensor = l2i_et.expand_dims(tensor, axis=-2) # (B, dim1, dim2, ..., dimN, 1, nchan)
numerator = tf.reduce_sum(tensor * self.coordinates, axis=self.spatial_axes) # (B, ndim, nchan)
denominator = tf.reduce_sum(tensor, axis=self.spatial_axes) + tf.keras.backend.epsilon()
return numerator / denominator
def compute_output_shape(self, input_shape):
return [[]]
class ResetValuesToZero(Layer):
"""This layer enables to reset given values to 0 within the input tensors.
:param values: list of values to be reset to 0.
example:
input = tf.convert_to_tensor(np.array([[1, 0, 2, 2, 2, 2, 0],
[1, 3, 3, 3, 3, 3, 3],
[1, 0, 0, 0, 4, 4, 4]]))
values = [1, 3]
ResetValuesToZero(values)(input)
>> [[0, 0, 2, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 4, 4, 4]]
"""
def __init__(self, values, **kwargs):
assert values is not None, 'please provide correct list of values, received None'
self.values = utils.reformat_to_list(values)
self.values_tens = None
self.n_values = len(values)
super(ResetValuesToZero, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["values"] = self.values
return config
def build(self, input_shape):
self.values_tens = tf.convert_to_tensor(self.values)
self.built = True
super(ResetValuesToZero, self).build(input_shape)
def call(self, inputs, **kwargs):
values = tf.cast(self.values_tens, dtype=inputs.dtype)
for i in range(self.n_values):
inputs = tf.where(tf.equal(inputs, values[i]), tf.zeros_like(inputs), inputs)
return inputs
class ConvertLabels(Layer):
"""Convert all labels in a tensor by the corresponding given set of values.
labels_converted = ConvertLabels(source_values, dest_values)(labels).
labels must be an int32 tensor, and labels_converted will also be int32.
:param source_values: list of all the possible values in labels. Must be a list or a 1D numpy array.
:param dest_values: list of all the target label values. Must be ordered the same as source values:
labels[labels == source_values[i]] = dest_values[i].
If None (default), dest_values is equal to [0, ..., N-1], where N is the total number of values in source_values,
which enables to remap label maps to [0, ..., N-1].
"""
def __init__(self, source_values, dest_values=None, **kwargs):
self.source_values = source_values
self.dest_values = dest_values
self.lut = None
super(ConvertLabels, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["source_values"] = self.source_values
config["dest_values"] = self.dest_values
return config
def build(self, input_shape):
self.lut = tf.convert_to_tensor(utils.get_mapping_lut(self.source_values, dest=self.dest_values), dtype='int32')
self.built = True
super(ConvertLabels, self).build(input_shape)
def call(self, inputs, **kwargs):
return tf.gather(self.lut, tf.cast(inputs, dtype='int32'))
class PadAroundCentre(Layer):
"""Pad the input tensor to the specified shape with the given value.
The input tensor is expected to have shape [batchsize, shape_dim1, ..., shape_dimn, channel].
:param pad_margin: margin to use for padding. The tensor will be padded by the provided margin on each side.
Can either be a number (all axes padded with the same margin), or a list/numpy array of length n_dims.
example: if tensor is of shape [batch, x, y, z, n_channels] and margin=10, then the padded tensor will be of
shape [batch, x+2*10, y+2*10, z+2*10, n_channels].
:param pad_shape: shape to pad the tensor to. Can either be a number (all axes padded to the same shape), or a
list/numpy array of length n_dims.
:param value: value to pad the tensors with. Default is 0.
"""
def __init__(self, pad_margin=None, pad_shape=None, value=0, **kwargs):
self.pad_margin = pad_margin
self.pad_shape = pad_shape
self.value = value
self.pad_margin_tens = None
self.pad_shape_tens = None
self.n_dims = None
super(PadAroundCentre, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["pad_margin"] = self.pad_margin
config["pad_shape"] = self.pad_shape
config["value"] = self.value
return config
def build(self, input_shape):
# input shape
self.n_dims = len(input_shape) - 2
shape = list(input_shape)
shape[0] = 0
shape[-1] = 0
if self.pad_margin is not None:
assert self.pad_shape is None, 'please do not provide a padding shape and margin at the same time.'
# reformat padding margins
pad = np.transpose(np.array([[0] + utils.reformat_to_list(self.pad_margin, self.n_dims) + [0]] * 2))
self.pad_margin_tens = tf.convert_to_tensor(pad, dtype='int32')
elif self.pad_shape is not None:
assert self.pad_margin is None, 'please do not provide a padding shape and margin at the same time.'
# pad shape
tensor_shape = tf.cast(tf.convert_to_tensor(shape), 'int32')
self.pad_shape_tens = np.array([0] + utils.reformat_to_list(self.pad_shape, length=self.n_dims) + [0])
self.pad_shape_tens = tf.convert_to_tensor(self.pad_shape_tens, dtype='int32')
self.pad_shape_tens = tf.math.maximum(tensor_shape, self.pad_shape_tens)
# padding margin
min_margins = (self.pad_shape_tens - tensor_shape) / 2
max_margins = self.pad_shape_tens - tensor_shape - min_margins
self.pad_margin_tens = tf.stack([min_margins, max_margins], axis=-1)
else:
raise Exception('please either provide a padding shape or a padding margin.')
self.built = True
super(PadAroundCentre, self).build(input_shape)
def call(self, inputs, **kwargs):
return tf.pad(inputs, self.pad_margin_tens, mode='CONSTANT', constant_values=self.value)
class MaskEdges(Layer):
"""Reset the edges of a tensor to zero (i.e. with bands of zeros along the specified axes).
The width of the zero-band is randomly drawn from a uniform distribution, whose range is given in boundaries.
:param axes: axes along which to reset edges to zero. Can be an int (single axis), or a sequence.
:param boundaries: numpy array of shape (len(axes), 4). Each row contains the two bounds of the uniform
distributions from which we draw the width of the zero-bands on each side.
Those bounds must be expressed in relative side (i.e. between 0 and 1).
:return: a tensor of the same shape as the input, with bands of zeros along the specified axes.
example:
tensor=tf.constant([[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]]) # shape = [1,10,10,1]
axes=1
boundaries = np.array([[0.2, 0.45, 0.85, 0.9]])
In this case, we reset the edges along the 2nd dimension (i.e. the 1st dimension after the batch dimension),
the 1st zero-band will expand from the 1st row to a number drawn from [0.2*tensor.shape[1], 0.45*tensor.shape[1]],
and the 2nd zero-band will expand from a row drawn from [0.85*tensor.shape[1], 0.9*tensor.shape[1]], to the end of
the tensor. A possible output could be:
array([[[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]]]) # shape = [1,10,10,1]
"""
def __init__(self, axes, boundaries, prob_mask=1, **kwargs):
self.axes = utils.reformat_to_list(axes, dtype='int')
self.boundaries = utils.reformat_to_n_channels_array(boundaries, n_dims=4, n_channels=len(self.axes))
self.prob_mask = prob_mask
self.inputshape = None
super(MaskEdges, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["axes"] = self.axes
config["boundaries"] = self.boundaries
config["prob_mask"] = self.prob_mask
return config
def build(self, input_shape):
self.inputshape = input_shape
self.built = True
super(MaskEdges, self).build(input_shape)
def call(self, inputs, **kwargs):
# build mask
mask = tf.ones_like(inputs)
for i, axis in enumerate(self.axes):
# select restricting indices
axis_boundaries = self.boundaries[i, :]
idx1 = tf.math.round(tf.random.uniform([1],
minval=axis_boundaries[0] * self.inputshape[axis],
maxval=axis_boundaries[1] * self.inputshape[axis]))
idx2 = tf.math.round(tf.random.uniform([1],
minval=axis_boundaries[2] * self.inputshape[axis],
maxval=axis_boundaries[3] * self.inputshape[axis] - 1) - idx1)
idx3 = self.inputshape[axis] - idx1 - idx2
split_idx = tf.cast(tf.concat([idx1, idx2, idx3], axis=0), dtype='int32')
# update mask
split_list = tf.split(inputs, split_idx, axis=axis)
tmp_mask = tf.concat([tf.zeros_like(split_list[0]),
tf.ones_like(split_list[1]),
tf.zeros_like(split_list[2])], axis=axis)
mask = mask * tmp_mask
# mask second_channel
tensor = K.switch(tf.squeeze(K.greater(tf.random.uniform([1], 0, 1), 1 - self.prob_mask)),
inputs * mask,
inputs)
return [tensor, mask]
def compute_output_shape(self, input_shape):
return [input_shape] * 2
class ImageGradients(Layer):
def __init__(self, gradient_type='sobel', return_magnitude=False, **kwargs):
self.gradient_type = gradient_type
assert (self.gradient_type == 'sobel') | (self.gradient_type == '1-step_diff'), \
'gradient_type should be either sobel or 1-step_diff, had %s' % self.gradient_type
# shape
self.n_dims = 0
self.shape = None
self.n_channels = 0
# convolution params if sobel diff
self.stride = None
self.kernels = None
self.convnd = None
self.return_magnitude = return_magnitude
super(ImageGradients, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["gradient_type"] = self.gradient_type
config["return_magnitude"] = self.return_magnitude
return config
def build(self, input_shape):
# get shapes
self.n_dims = len(input_shape) - 2
self.shape = input_shape[1:]
self.n_channels = input_shape[-1]
# prepare kernel if sobel gradients
if self.gradient_type == 'sobel':
self.kernels = l2i_et.sobel_kernels(self.n_dims)
self.stride = [1] * (self.n_dims + 2)
self.convnd = getattr(tf.nn, 'conv%dd' % self.n_dims)
else:
self.kernels = self.convnd = self.stride = None
self.built = True
super(ImageGradients, self).build(input_shape)
def call(self, inputs, **kwargs):
image = inputs
batchsize = tf.split(tf.shape(inputs), [1, -1])[0]
gradients = list()
# sobel method
if self.gradient_type == 'sobel':
# get sobel gradients in each direction
for n in range(self.n_dims):
gradient = image
# apply 1D kernel in each direction (sobel kernels are separable), instead of applying a nD kernel
for k in self.kernels[n]:
gradient = tf.concat([self.convnd(tf.expand_dims(gradient[..., n], -1), k, self.stride, 'SAME')
for n in range(self.n_channels)], -1)
gradients.append(gradient)
# 1-step method, only supports 2 and 3D
else:
# get 1-step diff
if self.n_dims == 2:
gradients.append(image[:, 1:, :, :] - image[:, :-1, :, :]) # dx
gradients.append(image[:, :, 1:, :] - image[:, :, :-1, :]) # dy
elif self.n_dims == 3:
gradients.append(image[:, 1:, :, :, :] - image[:, :-1, :, :, :]) # dx
gradients.append(image[:, :, 1:, :, :] - image[:, :, :-1, :, :]) # dy
gradients.append(image[:, :, :, 1:, :] - image[:, :, :, :-1, :]) # dz
else:
raise Exception('ImageGradients only support 2D or 3D tensors for 1-step diff, had: %dD' % self.n_dims)
# pad with zeros to return tensors of the same shape as input
for i in range(self.n_dims):
tmp_shape = list(self.shape)
tmp_shape[i] = 1
zeros = tf.zeros(tf.concat([batchsize, tf.convert_to_tensor(tmp_shape, dtype='int32')], 0), image.dtype)
gradients[i] = tf.concat([gradients[i], zeros], axis=i + 1)
# compute total gradient magnitude if necessary, or concatenate different gradients along the channel axis
if self.return_magnitude:
gradients = tf.sqrt(tf.reduce_sum(tf.square(tf.stack(gradients, axis=-1)), axis=-1))
else:
gradients = tf.concat(gradients, axis=-1)
return gradients
def compute_output_shape(self, input_shape):
if not self.return_magnitude:
input_shape = list(input_shape)
input_shape[-1] = self.n_dims
return tuple(input_shape)
class RandomDilationErosion(Layer):
"""
GPU implementation of binary dilation or erosion. The operation can be chosen to be always a dilation, or always an
erosion, or randomly choosing between them for each element of the batch.
The chosen operation is applied to the input with a given probability. Moreover, it is also possible to randomise
the factor of the operation for each element of the mini-batch.
:param min_factor: minimum possible value for the dilation/erosion factor. Must be an integer.
:param max_factor: minimum possible value for the dilation/erosion factor. Must be an integer.
Set it to the same value as min_factor to always perform dilation/erosion with the same factor.
:param prob: probability with which to apply the selected operation to the input.
:param operation: which operation to apply. Can be 'dilation' or 'erosion' or 'random'.
:param return_mask: if operation is erosion and the input of this layer is a label map, we have the
choice to either return the eroded label map or the mask (return_mask=True)
"""
def __init__(self, min_factor, max_factor, max_factor_dilate=None, prob=1, operation='random', return_mask=False,
**kwargs):
self.min_factor = min_factor
self.max_factor = max_factor
self.max_factor_dilate = max_factor_dilate if max_factor_dilate is not None else self.max_factor
self.prob = prob
self.operation = operation
self.return_mask = return_mask
self.n_dims = None
self.inshape = None
self.n_channels = None
self.convnd = None
super(RandomDilationErosion, self).__init__(**kwargs)
def get_config(self):
config = super().get_config()
config["min_factor"] = self.min_factor
config["max_factor"] = self.max_factor
config["max_factor_dilate"] = self.max_factor_dilate
config["prob"] = self.prob
config["operation"] = self.operation
config["return_mask"] = self.return_mask
return config
def build(self, input_shape):
# input shape
self.inshape = input_shape
self.n_dims = len(self.inshape) - 2
self.n_channels = self.inshape[-1]
# prepare convolution
self.convnd = getattr(tf.nn, 'conv%dd' % self.n_dims)
self.built = True
super(RandomDilationErosion, self).build(input_shape)
def call(self, inputs, **kwargs):
# sample probability of applying operation. If random negative is erosion and positive is dilation
batchsize = tf.split(tf.shape(inputs), [1, -1])[0]
shape = tf.concat([batchsize, tf.convert_to_tensor([1], dtype='int32')], axis=0)
if self.operation == 'dilation':
prob = tf.random.uniform(shape, 0, 1)
elif self.operation == 'erosion':
prob = tf.random.uniform(shape, -1, 0)
elif self.operation == 'random':
prob = tf.random.uniform(shape, -1, 1)
else:
raise ValueError("operation should either be 'dilation' 'erosion' or 'random', had %s" % self.operation)
# build kernel
if self.min_factor == self.max_factor:
dist_threshold = self.min_factor * tf.ones(shape, dtype='int32')
else:
if (self.max_factor == self.max_factor_dilate) | (self.operation != 'random'):
dist_threshold = tf.random.uniform(shape, minval=self.min_factor, maxval=self.max_factor, dtype='int32')
else:
dist_threshold = tf.cast(tf.map_fn(self._sample_factor, [prob], dtype=tf.float32), dtype='int32')
kernel = l2i_et.unit_kernel(dist_threshold, self.n_dims, max_dist_threshold=self.max_factor)
# convolve input mask with kernel according to given probability
mask = tf.cast(tf.cast(inputs, dtype='bool'), dtype='float32')
mask = tf.map_fn(self._single_blur, [mask, kernel, prob], dtype=tf.float32)
mask = tf.cast(mask, 'bool')
if self.return_mask:
return mask
else:
return inputs * tf.cast(mask, dtype=inputs.dtype)
def _sample_factor(self, inputs):
return tf.cast(K.switch(K.less(tf.squeeze(inputs[0]), 0),
tf.random.uniform((1,), self.min_factor, self.max_factor, dtype='int32'),
tf.random.uniform((1,), self.min_factor, self.max_factor_dilate, dtype='int32')),
dtype='float32')
def _single_blur(self, inputs):
# dilate...
new_mask = K.switch(K.greater(tf.squeeze(inputs[2]), 1 - self.prob + 0.001),
tf.cast(tf.greater(tf.squeeze(self.convnd(tf.expand_dims(inputs[0], 0), inputs[1],
[1] * (self.n_dims + 2), padding='SAME'), axis=0), 0.01), dtype='float32'),
inputs[0])
# ...or erode
new_mask = K.switch(K.less(tf.squeeze(inputs[2]), - (1 - self.prob + 0.001)),
1 - tf.cast(tf.greater(tf.squeeze(self.convnd(tf.expand_dims(1 - new_mask, 0), inputs[1],
[1] * (self.n_dims + 2), padding='SAME'), axis=0), 0.01), dtype='float32'),
new_mask)
return new_mask
def compute_output_shape(self, input_shape):
return input_shape