#!/usr/bin/env python
# coding: utf-8
# # Object Detection Demo
# Welcome to the object detection inference walkthrough! This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start.
# # Imports
# In[ ]:
import numpy as np
import os
import sys
import tensorflow as tf
from tensorflow.keras import backend as K
import pickle
# for download url and extract zip
# import six.moves.urllib as urllib
# import tarfile
# import zipfile
# legacy utils
# from collections import defaultdict
# from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# zhulei custom config patch
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
sess = tf.Session(config=config)
K.set_session(sess) # set this TensorFlow session as the default session for Keras
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
print(tf.__version__)
# ## Env setup
# In[ ]:
myhost = os.uname()[1]
print(">>>> Hostname: ", myhost)
print("\nCWD: ", os.getcwd())
# ## Object detection imports
# Here are the imports from the object detection module.
# In[ ]:
from utils import label_map_util
from utils import visualization_utils as vis_util
# # Model preparation
# ## Variables
#
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
#
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# In[ ]:
# Folder name containing the Trained Obj-det model/graph
MODEL_NAME = 'Axial_1-491_Resnet_Jun142020_graph'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'ak_detection.pbtxt')
# 3 for axial, 1 for sagittal
NUM_CLASSES = 3
# save previews of the overlay images
save_previews = False
if save_previews:
script_dir = os.getcwd()
results_dir = os.path.join(script_dir, 'Sag_Resnet_1-491-preview_obj-det-results-Jun222020/')
if not os.path.isdir(results_dir):
os.makedirs(results_dir)
# ## Load a (frozen) Tensorflow model into memory.
# In[ ]:
# zhulei updated with compat.v1 and tf.io
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# zhulei custom modify
#category_index = {1: {'id': 1, 'name': 'left'}, 2: {'id': 2, 'name': 'center'}, 3: {'id': 3, 'name': 'right'}}
print("\ncategory_index: ", category_index)
# ## Helper code
# In[ ]:
# zhulei modify to detect image.mode
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
# 'L' for Grayscale, 'RGB' : for 3 channel images
channel_dict = {'L':1, 'RGB':3}
return np.array(image.getdata()).reshape(
(im_height, im_width, channel_dict[image.mode])).astype(np.uint8)
# # Detection
# In[ ]:
print("current dir: ", os.getcwd())
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'images/test'
generated_pickle = './{}/obj-det.pickle'.format(
PATH_TO_TEST_IMAGES_DIR)
# TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
TEST_IMAGE_PATHS = []
for file in os.listdir(PATH_TO_TEST_IMAGES_DIR):
if '.jpg' in file or '.png' in file or '.JPG' in file:
TEST_IMAGE_PATHS.append(os.path.join(PATH_TO_TEST_IMAGES_DIR, file))
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
print("\nTest images: ", TEST_IMAGE_PATHS[:5])
print("\nNum test images: ", len(TEST_IMAGE_PATHS))
# In[ ]:
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.compat.v1.Session() as sess:
# Get handles to input and output tensors
ops = tf.compat.v1.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# In[ ]:
detection_result = {}
count_img = 0
for image_path in TEST_IMAGE_PATHS:
# zhulei add counting img
print('process: ', str(count_img), image_path)
count_img += 1
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# zhulei check for image_np
if image_np.shape[2] != 3:
# Duplicating the Content
image_np = np.broadcast_to(image_np, (image_np.shape[0], image_np.shape[1], 3)).copy()
## adding Zeros to other Channels
## This adds Red Color stuff in background -- not recommended
# z = np.zeros(image_np.shape[:-1] + (2,), dtype=image_np.dtype)
# image_np = np.concatenate((image_np, z), axis=-1)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=2) # default 8
# zhulei custom
boxes = output_dict['detection_boxes']
classes = output_dict['detection_classes']
scores = output_dict['detection_scores']
max_boxes_to_draw = 20
min_score_thresh = 0.5
box_to_class = {}
# zhulei custom noting down the box_to_classes
for i in range(min(max_boxes_to_draw, boxes.shape[0])):
if scores[i] > min_score_thresh:
box = tuple(boxes[i].tolist())
box_to_class[box] = classes[i]
# for export to pickle later
detection_result[image_path] = box_to_class
if save_previews:
plt.figure(figsize=IMAGE_SIZE)
# need imshow to save the imgs
plt.imshow(image_np)
plt.savefig('{}/{}'.format(
results_dir, os.path.basename(image_path))
)
# In[ ]:
# export detection_result dict with pickle
with open(generated_pickle, 'wb') as f:
pickle.dump(detection_result, f, protocol=pickle.HIGHEST_PROTOCOL)
# verify the generated pickle is saved
# generated_pickle = './{}/{}_detection.pickle'.format(PATH_TO_TEST_IMAGES_DIR, labeler)
print(os.path.exists(generated_pickle))
print(generated_pickle, "exists")
print(os.path.getsize(generated_pickle), "byte")