[db7631]: / Object-Detection / object_detection.py

Download this file

293 lines (210 with data), 9.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python
# coding: utf-8
# # Object Detection Demo
# Welcome to the object detection inference walkthrough! This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start.
# # Imports
# In[ ]:
import numpy as np
import os
import sys
import tensorflow as tf
from tensorflow.keras import backend as K
import pickle
# for download url and extract zip
# import six.moves.urllib as urllib
# import tarfile
# import zipfile
# legacy utils
# from collections import defaultdict
# from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# zhulei custom config patch
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
sess = tf.Session(config=config)
K.set_session(sess) # set this TensorFlow session as the default session for Keras
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
print(tf.__version__)
# ## Env setup
# In[ ]:
myhost = os.uname()[1]
print(">>>> Hostname: ", myhost)
print("\nCWD: ", os.getcwd())
# ## Object detection imports
# Here are the imports from the object detection module.
# In[ ]:
from utils import label_map_util
from utils import visualization_utils as vis_util
# # Model preparation
# ## Variables
#
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
#
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# In[ ]:
# Folder name containing the Trained Obj-det model/graph
MODEL_NAME = 'Axial_1-491_Resnet_Jun142020_graph'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'ak_detection.pbtxt')
# 3 for axial, 1 for sagittal
NUM_CLASSES = 3
# save previews of the overlay images
save_previews = False
if save_previews:
script_dir = os.getcwd()
results_dir = os.path.join(script_dir, 'Sag_Resnet_1-491-preview_obj-det-results-Jun222020/')
if not os.path.isdir(results_dir):
os.makedirs(results_dir)
# ## Load a (frozen) Tensorflow model into memory.
# In[ ]:
# zhulei updated with compat.v1 and tf.io
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# zhulei custom modify
#category_index = {1: {'id': 1, 'name': 'left'}, 2: {'id': 2, 'name': 'center'}, 3: {'id': 3, 'name': 'right'}}
print("\ncategory_index: ", category_index)
# ## Helper code
# In[ ]:
# zhulei modify to detect image.mode
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
# 'L' for Grayscale, 'RGB' : for 3 channel images
channel_dict = {'L':1, 'RGB':3}
return np.array(image.getdata()).reshape(
(im_height, im_width, channel_dict[image.mode])).astype(np.uint8)
# # Detection
# In[ ]:
print("current dir: ", os.getcwd())
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'images/test'
generated_pickle = './{}/obj-det.pickle'.format(
PATH_TO_TEST_IMAGES_DIR)
# TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
TEST_IMAGE_PATHS = []
for file in os.listdir(PATH_TO_TEST_IMAGES_DIR):
if '.jpg' in file or '.png' in file or '.JPG' in file:
TEST_IMAGE_PATHS.append(os.path.join(PATH_TO_TEST_IMAGES_DIR, file))
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
print("\nTest images: ", TEST_IMAGE_PATHS[:5])
print("\nNum test images: ", len(TEST_IMAGE_PATHS))
# In[ ]:
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.compat.v1.Session() as sess:
# Get handles to input and output tensors
ops = tf.compat.v1.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# In[ ]:
detection_result = {}
count_img = 0
for image_path in TEST_IMAGE_PATHS:
# zhulei add counting img
print('process: ', str(count_img), image_path)
count_img += 1
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# zhulei check for image_np
if image_np.shape[2] != 3:
# Duplicating the Content
image_np = np.broadcast_to(image_np, (image_np.shape[0], image_np.shape[1], 3)).copy()
## adding Zeros to other Channels
## This adds Red Color stuff in background -- not recommended
# z = np.zeros(image_np.shape[:-1] + (2,), dtype=image_np.dtype)
# image_np = np.concatenate((image_np, z), axis=-1)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=2) # default 8
# zhulei custom
boxes = output_dict['detection_boxes']
classes = output_dict['detection_classes']
scores = output_dict['detection_scores']
max_boxes_to_draw = 20
min_score_thresh = 0.5
box_to_class = {}
# zhulei custom noting down the box_to_classes
for i in range(min(max_boxes_to_draw, boxes.shape[0])):
if scores[i] > min_score_thresh:
box = tuple(boxes[i].tolist())
box_to_class[box] = classes[i]
# for export to pickle later
detection_result[image_path] = box_to_class
if save_previews:
plt.figure(figsize=IMAGE_SIZE)
# need imshow to save the imgs
plt.imshow(image_np)
plt.savefig('{}/{}'.format(
results_dir, os.path.basename(image_path))
)
# In[ ]:
# export detection_result dict with pickle
with open(generated_pickle, 'wb') as f:
pickle.dump(detection_result, f, protocol=pickle.HIGHEST_PROTOCOL)
# verify the generated pickle is saved
# generated_pickle = './{}/{}_detection.pickle'.format(PATH_TO_TEST_IMAGES_DIR, labeler)
print(os.path.exists(generated_pickle))
print(generated_pickle, "exists")
print(os.path.getsize(generated_pickle), "byte")