[c28c68]: / Code / fuzzyCMeans.m

Download this file

52 lines (46 with data), 1.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function [ Unew, centroid, obj_func_new ] = fuzzyCMeans( img, k )
[row, col] = size(img);
fuzziness = 2; % fuzzification parameter
epsilon = 0.001; % stopping condition
max_iter = 100; % number of maximun iteration
Uold = rand(row, col, k);
dep_sum = sum(Uold, 3);
dep_sum = repmat(dep_sum, [1,1, k]);
Uold = Uold./dep_sum;
centroid = zeros(k,1);
for i=1:k
centroid(i,1) = sum(sum(Uold(:,:,i).*img))/sum(sum(Uold(:,:,i)));
end
obj_func_old = 0;
for i=1:k
obj_func_old = obj_func_old + sum(sum((Uold(:,:,i) .*img - centroid(i)).^2));
end
for iter = 1:max_iter
Unew = zeros(size(Uold));
for i=1:row
for j=1:col
for uII = 1:k
tmp = 0;
for uJJ = 1:k
disUp = abs(img(i,j) - centroid(uII));
disDn = abs(img(i,j) - centroid(uJJ));
tmp = tmp + (disUp/disDn).^(2/(fuzziness-1));
end
Unew(i,j, uII) = 1/(tmp);
end
end
end
obj_func_new = 0;
for i=1:k
obj_func_new = obj_func_new + sum(sum((Unew(:,:,i) .*img - centroid(i)).^2));
end
if max(max(max(abs(Unew-Uold))))<epsilon || abs(obj_func_new - obj_func_old)<epsilon
break;
else
Uold = Unew.^fuzziness;
for i=1:k
centroid(i,1) = sum(sum(Uold(:,:,i).*img))/sum(sum(Uold(:,:,i)));
end
obj_func_old = obj_func_new;
end
end