|
a |
|
b/Code/kmeans.m |
|
|
1 |
function [k, class, img_vect] = kmeans(img, k); |
|
|
2 |
|
|
|
3 |
img = double(img); |
|
|
4 |
img = imresize(img, [256,256]); |
|
|
5 |
img_vect = img(:); |
|
|
6 |
centroid = zeros(k,1); |
|
|
7 |
class = zeros(length(img_vect), k); |
|
|
8 |
%initialize centroid |
|
|
9 |
maximum = max(img_vect); |
|
|
10 |
for cent = 1:k |
|
|
11 |
centroid(cent,1)= cent * maximum / k; |
|
|
12 |
end |
|
|
13 |
iter = 0; |
|
|
14 |
while(iter<10) |
|
|
15 |
class(1:length(img_vect),1:k) = 0; |
|
|
16 |
% classifying pixels |
|
|
17 |
for i = 1: length(img_vect) |
|
|
18 |
[val, ind]=min(abs(img_vect(i) - centroid((1:k),1))); |
|
|
19 |
class(i,ind)= img_vect(i); |
|
|
20 |
end |
|
|
21 |
% updating centroid |
|
|
22 |
for cent = 1:k |
|
|
23 |
centroid(cent, 1)= sum(class(:,cent))/length(find(class(:,cent))); |
|
|
24 |
end |
|
|
25 |
|
|
|
26 |
iter = iter +1; |
|
|
27 |
end |
|
|
28 |
|
|
|
29 |
%figure;imshow(img,[]),title('original'); |
|
|
30 |
% for clust = 1:k |
|
|
31 |
% cluster = reshape(class(1:length(img_vect),clust:clust), [256,256] ); |
|
|
32 |
% figure; imshow(cluster,[]),title('cluster'); |
|
|
33 |
% end |
|
|
34 |
|