import os, torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import cv2
import random
import torchio as tio
import slicerio
import nrrd
import monai
import pickle
import nibabel as nib
from scipy.ndimage import zoom
from monai.transforms import OneOf
import einops
from funcs import *
from torchvision.transforms import InterpolationMode
#from .utils.transforms import ResizeLongestSide
class MRI_dataset(Dataset):
def __init__(self,args, img_folder, mask_folder, img_list,phase='train',sample_num=50,channel_num=1,crop=False,crop_size=1024,targets=['femur','hip'],part_list=['all'],cls=1,if_prompt=True,prompt_type='point',region_type='largest_15',prompt_num=15,delete_empty_masks=False,if_attention_map=None):
super(MRI_dataset, self).__init__()
self.img_folder = img_folder
self.mask_folder = mask_folder
self.crop = crop
self.crop_size = crop_size
self.phase = phase
self.channel_num=channel_num
self.targets = targets
self.segment_names_to_labels = []
self.args = args
self.cls = cls
self.if_prompt = if_prompt
self.region_type = region_type
self.prompt_type = prompt_type
self.prompt_num = prompt_num
self.if_attention_map = if_attention_map
for i,tag in enumerate(targets):
self.segment_names_to_labels.append((tag,i))
namefiles = open(img_list,'r')
self.data_list = namefiles.read().split('\n')[:-1]
if delete_empty_masks=='delete' or delete_empty_masks=='subsample':
keep_idx = []
for idx,data in enumerate(self.data_list):
mask_path = data.split(' ')[1]
if os.path.exists(os.path.join(self.mask_folder,mask_path)):
msk = Image.open(os.path.join(self.mask_folder,mask_path)).convert('L')
else:
msk = Image.open(os.path.join(self.mask_folder.replace('2D-slices','2D-slices-generated'),mask_path)).convert('L')
if 'all' in self.targets: # combine all targets as single target
mask_cls = np.array(np.array(msk,dtype=int)>0,dtype=int)
else:
mask_cls = np.array(msk==self.cls,dtype=int)
if part_list[0]=='all' and np.sum(mask_cls)>0:
keep_idx.append(idx)
elif np.sum(mask_cls)>0:
if_keep = False
for part in part_list:
if mask_path.find(part)>=0:
if_keep = True
if if_keep:
keep_idx.append(idx)
print('num with non-empty masks',len(keep_idx),'num with all masks',len(self.data_list))
if delete_empty_masks=='subsample':
empty_idx = list(set(range(len(self.data_list)))-set(keep_idx))
keep_empty_idx = random.sample(empty_idx, int(len(empty_idx)*0.1))
keep_idx = empty_idx + keep_idx
self.data_list = [self.data_list[i] for i in keep_idx] # keep the slices that contains target mask
if phase == 'train':
self.aug_img = [transforms.RandomEqualize(p=0.1),
transforms.ColorJitter(brightness=0.3, contrast=0.3,saturation=0.3,hue=0.3),
transforms.RandomAdjustSharpness(0.5, p=0.5),
]
self.transform_spatial = transforms.Compose([transforms.RandomResizedCrop(crop_size, scale=(0.8, 1.2)),
transforms.RandomRotation(45)])
transform_img = [transforms.ToTensor()]
else:
transform_img = [
transforms.ToTensor(),
]
self.transform_img = transforms.Compose(transform_img)
def __len__(self):
return len(self.data_list)
def __getitem__(self,index):
# load image and the mask
data = self.data_list[index]
img_path = data.split(' ')[0]
mask_path = data.split(' ')[1]
slice_num = data.split(' ')[3] # total slice num for this object
#print(img_path,mask_path)
try:
if os.path.exists(os.path.join(self.img_folder,img_path)):
img = Image.open(os.path.join(self.img_folder,img_path)).convert('RGB')
else:
img = Image.open(os.path.join(self.img_folder.replace('2D-slices','2D-slices-generated'),img_path)).convert('RGB')
except:
# try to load image as numpy file
img_arr = np.load(os.path.join(self.img_folder,img_path))
img_arr = np.array((img_arr-img_arr.min())/(img_arr.max()-img_arr.min()+1e-8)*255,dtype=np.uint8)
img_3c = np.tile(img_arr[:, :,None], [1, 1, 3])
img = Image.fromarray(img_3c, 'RGB')
if os.path.exists(os.path.join(self.mask_folder,mask_path)):
msk = Image.open(os.path.join(self.mask_folder,mask_path)).convert('L')
else:
msk = Image.open(os.path.join(self.mask_folder.replace('2D-slices','2D-slices-generated'),mask_path)).convert('L')
if self.if_attention_map:
slice_id = int(img_path.split('-')[-1].split('.')[0])
slice_fraction = int(slice_id/int(slice_num)*4)
img_id = '/'.join(img_path.split('-')[:-1]) +'_'+str(slice_fraction) + '.npy'
attention_map = torch.tensor(np.load(os.path.join(self.if_attention_map,img_id)))
else:
attention_map = torch.zeros((64,64))
img = transforms.Resize((self.args.image_size,self.args.image_size))(img)
msk = transforms.Resize((self.args.image_size,self.args.image_size),InterpolationMode.NEAREST)(msk)
state = torch.get_rng_state()
if self.crop:
im_w, im_h = img.size
diff_w = max(0,self.crop_size-im_w)
diff_h = max(0,self.crop_size-im_h)
padding = (diff_w//2, diff_h//2, diff_w-diff_w//2, diff_h-diff_h//2)
img = transforms.functional.pad(img, padding, 0, 'constant')
torch.set_rng_state(state)
t,l,h,w=transforms.RandomCrop.get_params(img,(self.crop_size,self.crop_size))
img = transforms.functional.crop(img, t, l, h,w)
msk = transforms.functional.pad(msk, padding, 0, 'constant')
msk = transforms.functional.crop(msk, t, l, h,w)
if self.phase =='train':
# add random optimazition
aug_img_fuc = transforms.RandomChoice(self.aug_img)
img = aug_img_fuc(img)
img = self.transform_img(img)
if self.phase == 'train':
# It will randomly choose one
random_transform = OneOf([monai.transforms.RandGaussianNoise(prob=0.5, mean=0.0, std=0.1),\
monai.transforms.RandKSpaceSpikeNoise(prob=0.5, intensity_range=None, channel_wise=True),\
monai.transforms.RandBiasField(degree=3),\
monai.transforms.RandGibbsNoise(prob=0.5, alpha=(0.0, 1.0))
],weights=[0.3,0.3,0.2,0.2])
img = random_transform(img).as_tensor()
else:
if img.mean()<0.05:
img = min_max_normalize(img)
img = monai.transforms.AdjustContrast(gamma=0.8)(img)
if 'all' in self.targets: # combine all targets as single target
msk = np.array(np.array(msk,dtype=int)>0,dtype=int)
else:
msk = np.array(msk,dtype=int)
mask_cls = np.array(msk==self.cls,dtype=int)
if self.phase=='train' and (not self.if_attention_map==None):
mask_cls = np.repeat(mask_cls[np.newaxis,:, :], 3, axis=0)
both_targets = torch.cat((img.unsqueeze(0), torch.tensor(mask_cls).unsqueeze(0)),0)
transformed_targets = self.transform_spatial(both_targets)
img = transformed_targets[0]
mask_cls = np.array(transformed_targets[1][0].detach(),dtype=int)
img = (img-img.min())/(img.max()-img.min()+1e-8)
img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
# generate mask and prompt
if self.if_prompt:
if self.prompt_type =='point':
prompt,mask_now = get_first_prompt(mask_cls,region_type=self.region_type,prompt_num=self.prompt_num)
pc = torch.as_tensor(prompt[:,:2], dtype=torch.float)
pl = torch.as_tensor(prompt[:, -1], dtype=torch.float)
msk = torch.unsqueeze(torch.tensor(mask_now,dtype=torch.long),0)
return {'image':img,
'mask':msk,
'point_coords': pc,
'point_labels':pl,
'img_name':img_path,
'atten_map':attention_map,
}
elif self.prompt_type =='box':
prompt,mask_now = get_top_boxes(mask_cls,region_type=self.region_type,prompt_num=self.prompt_num)
box = torch.as_tensor(prompt, dtype=torch.float)
msk = torch.unsqueeze(torch.tensor(mask_now,dtype=torch.long),0)
return {'image':img,
'mask':msk,
'boxes':box,
'img_name':img_path,
'atten_map':attention_map,
}
else:
msk = torch.unsqueeze(torch.tensor(mask_cls,dtype=torch.long),0)
return {'image':img,
'mask':msk,
'img_name':img_path,
'atten_map':attention_map,
}
class MRI_dataset_multicls(Dataset):
def __init__(self, args, img_folder, mask_folder, img_list, phase='train', sample_num=50, channel_num=1,
crop=False, crop_size=1024, targets=['combine_all'], part_list=['all'], if_prompt=True,
prompt_type='point', if_spatial = True, region_type='largest_20', prompt_num=20, delete_empty_masks=False,
label_mapping=None, reference_slice_num=0, if_attention_map=None,label_frequency_path=None):
super(MRI_dataset_multicls, self).__init__()
self.initialize_parameters(args, img_folder, mask_folder, img_list, phase, sample_num, channel_num,
crop, crop_size, targets, part_list, if_prompt, prompt_type, if_spatial, region_type,
prompt_num, delete_empty_masks, label_mapping, reference_slice_num, if_attention_map,label_frequency_path)
self.load_label_mapping()
self.prepare_data_list()
self.filter_data_list()
if phase == 'train':
self.setup_transformations_train(crop_size)
else:
self.setup_transformations_other()
def initialize_parameters(self, args, img_folder, mask_folder, img_list, phase, sample_num, channel_num,
crop, crop_size, targets, part_list, if_prompt, prompt_type, if_spatial, region_type,
prompt_num, delete_empty_masks, label_mapping, reference_slice_num, if_attention_map,label_frequency_path):
self.args = args
self.img_folder = img_folder
self.mask_folder = mask_folder
self.img_list = img_list
self.phase = phase
self.sample_num = sample_num
self.channel_num = channel_num
self.crop = crop
self.crop_size = crop_size
self.targets = targets
self.part_list = part_list
self.if_prompt = if_prompt
self.prompt_type = prompt_type
self.if_spatial = if_spatial
self.region_type = region_type
self.prompt_num = prompt_num
self.delete_empty_masks = delete_empty_masks
self.label_mapping = label_mapping
self.reference_slice_num = reference_slice_num
self.if_attention_map = if_attention_map
self.label_dic = {}
self.label_frequency_path = label_frequency_path
def load_label_mapping(self):
# Load the basic label mappings from a pickle file
if self.label_mapping:
with open(self.label_mapping, 'rb') as handle:
self.segment_names_to_labels = pickle.load(handle)
self.label_dic = {seg[1]: seg[0] for seg in self.segment_names_to_labels}
self.label_name_list = [seg[0] for seg in self.segment_names_to_labels]
print(self.label_dic)
else:
self.label_dic = {value: 'all' for value in range(1, 256)}
# Load frequency data and remap classes if required
if 'remap_frequency' in self.targets:
self.load_and_remap_classes_based_on_frequency()
def load_and_remap_classes_based_on_frequency(self):
if self.label_frequency_path:
with open(self.label_frequency_path, 'r') as file:
all_label_frequencies = json.load(file)
all_label_frequencies = all_label_frequencies['train']
# Example to select the target region dynamically based on some condition or configuration
target_region = self.part_list[0]
if target_region in all_label_frequencies:
label_frequencies = all_label_frequencies[target_region]
self.label_frequencies = label_frequencies
#print(label_frequencies)
self.remap_classes_based_on_frequency(label_frequencies)
else:
print(f"Warning: No frequency data found for the target region '{target_region}'. No remapping applied.")
def remap_classes_based_on_frequency(self, label_frequencies):
# Determine the frequency threshold for high vs. low frequency classes
total = max(label_frequencies.values())
high_freq_threshold = total * 0.5 # Adjust this threshold as needed
# Initialize dictionaries to hold new class mappings
high_freq_classes = {}
low_freq_classes = {}
# Assign classes to high or low frequency based on the threshold
for label, freq in label_frequencies.items():
if freq >= high_freq_threshold:
high_freq_classes[label] = freq
else:
low_freq_classes[label] = freq
# Update label dictionary based on the frequency classification
#self.label_dic: {old_cls: old_name}
new_label_dic = {}
for cls, name in self.label_dic.items():
if name in high_freq_classes:
new_label_dic[cls] = name # Retain original name for high frequency classes
elif name in low_freq_classes:
new_label_dic[cls] = 'combined_low_freq' # Combine low frequency classes into one
self.updated_label_dic = new_label_dic
#new_label_dic: {old_cls: new_name}
#print("Updated label dictionary with frequency remapping:", new_label_dic)
#print('new_label_dic:',new_label_dic)
# Sort high frequency keys by their frequency in descending order
sorted_high_freq_labels = sorted(high_freq_classes.items(), key=lambda item: item[1], reverse=True)
# Create a mapping for high frequency classes based on the sorted order
original_to_new = {label: idx + 1 for idx, (label, _) in enumerate(sorted_high_freq_labels)}
combined_low_freq_class_id = len(original_to_new) + 1
# Ensure combined low frequency class is mapped correctly
if 'combined_low_freq' in new_label_dic.values():
for cls in low_freq_classes.keys():
original_to_new[cls] = combined_low_freq_class_id
# orignal_to_new {old_name:new_cls}
#print('original_to_new:',original_to_new)
# Create additional dictionaries
self.old_name_to_new_name = {self.label_dic[cls]: new_label for cls, new_label in new_label_dic.items()}
self.old_cls_to_new_cls = {cls: original_to_new[self.label_dic[cls]] for cls in self.label_dic.keys() if self.label_dic[cls] in original_to_new}
print('remapped label dic:',self.old_name_to_new_name)
print('remapped cls dic:',self.old_cls_to_new_cls)
def prepare_data_list(self):
with open(self.img_list, 'r') as namefiles:
self.data_list = namefiles.read().split('\n')[:-1]
self.sp_symbol = ',' if ',' in self.data_list[0] else ' '
def filter_data_list(self):
keep_idx = []
for idx, data in enumerate(self.data_list):
img_path, mask_path = self.extract_paths(data)
msk = Image.open(os.path.join(self.mask_folder, mask_path)).convert('L')
mask_cls = self.determine_mask_class(msk)
if self.should_keep(mask_cls, mask_path):
keep_idx.append(idx)
if self.reference_slice_num > 1:
self.add_reference_slice(img_path, mask_path, data)
self.data_list = [self.data_list[i] for i in keep_idx]
print('num with non-empty masks', len(keep_idx), 'num with all masks', len(self.data_list))
def extract_paths(self, data):
img_path = data.split(self.sp_symbol)[0]
mask_path = data.split(self.sp_symbol)[1]
return img_path.lstrip('/'), mask_path.lstrip('/')
def determine_mask_class(self, msk):
if 'combine_all' in self.targets:
return np.array(msk, dtype=int) > 0
elif self.targets[0] in self.label_name_list:
return np.array(msk, dtype=int) == self.cls
return np.array(msk, dtype=int)
def should_keep(self, mask_cls, mask_path):
if self.delete_empty_masks:
has_mask = np.any(mask_cls > 0)
if has_mask:
if self.part_list[0] == 'all':
return True
return any(mask_path.find(part) >= 0 for part in self.part_list)
return False
return True
def add_reference_slice(self, img_path, mask_path, data):
volume_name = ''.join(img_path.split('-')[:-1]) # get volume name
slice_num = data.split(self.sp_symbol)[2]
if volume_name not in self.reference_slices:
self.reference_slices[volume_name] = []
self.reference_slices[volume_name].append((img_path, mask_path, slice_num))
def setup_transformations_train(self, crop_size):
self.transform_img = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.aug_img = transforms.RandomChoice([
transforms.RandomEqualize(p=0.1),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3),
transforms.RandomAdjustSharpness(0.5, p=0.5),
])
if self.if_spatial:
self.transform_spatial = transforms.Compose([transforms.RandomResizedCrop(self.crop_size, scale=(0.5, 1.5), interpolation=InterpolationMode.NEAREST),
transforms.RandomRotation(45, interpolation=InterpolationMode.NEAREST)])
def setup_transformations_other(self):
self.transform_img = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
# Load image and mask, handle missing files
data = self.data_list[index]
img, msk, img_path, mask_path, slice_num = self.load_image_and_mask(data)
# Optional: Load attention map
attention_map = self.load_attention_map(img_path, slice_num) if self.if_attention_map else torch.zeros((64, 64))
# Handle reference slices if necessary
if self.reference_slice_num > 1:
img, msk = self.handle_reference_slices(img_path, mask_path, slice_num)
# Apply transformations
img, msk = self.apply_transformations(img, msk)
# Generate and process masks and prompts
output_dict = self.prepare_output(img, msk, img_path, mask_path,attention_map)
return output_dict
def load_image_and_mask(self, data):
img_path, mask_path = self.extract_paths(data)
slice_num = data.split(self.sp_symbol)[3] # Extract total slice number for this object
img_folder = self.img_folder
msk_folder = self.mask_folder
img = Image.open(os.path.join(img_folder, img_path)).convert('RGB')
msk = Image.open(os.path.join(msk_folder, mask_path)).convert('L')
# Resize images for processing
img = transforms.Resize((self.args.image_size, self.args.image_size))(img)
msk = transforms.Resize((self.args.image_size, self.args.image_size), InterpolationMode.NEAREST)(msk)
return img, msk, img_path, mask_path, int(slice_num)
def load_attention_map(self, img_path, slice_num):
slice_id = int(img_path.split('-')[-1].split('.')[0])
slice_fraction = int(slice_id / slice_num * 4)
img_id = '/'.join(img_path.split('-')[:-1]) + '_' + str(slice_fraction) + '.npy'
attention_map = torch.tensor(np.load(os.path.join(self.if_attention_map, img_id)))
return attention_map
def apply_crop(self, img, msk):
im_w, im_h = img.size
diff_w = max(0, self.crop_size - im_w)
diff_h = max(0, self.crop_size - im_h)
padding = (diff_w // 2, diff_h // 2, diff_w - diff_w // 2, diff_h - diff_h // 2)
img = transforms.functional.pad(img, padding, 0, 'constant')
msk = transforms.functional.pad(msk, padding, 0, 'constant')
t, l, h, w = transforms.RandomCrop.get_params(img, (self.crop_size, self.crop_size))
img = transforms.functional.crop(img, t, l, h, w)
msk = transforms.functional.crop(msk, t, l, h, w)
return img, msk
def apply_transformations(self, img, msk):
if self.crop:
img, msk = self.apply_crop(img, msk)
if self.phase == 'train':
img = self.aug_img(img)
img = self.transform_img(img)
if self.phase =='train' and self.if_spatial:
mask_cls = np.array(msk,dtype=int)
mask_cls = np.repeat(mask_cls[np.newaxis,:, :], 3, axis=0)
both_targets = torch.cat((img.unsqueeze(0), torch.tensor(mask_cls).unsqueeze(0)),0)
transformed_targets = self.transform_spatial(both_targets)
img = transformed_targets[0]
mask_cls = np.array(transformed_targets[1][0].detach(),dtype=int)
msk = torch.tensor(mask_cls)
return img, msk
def handle_reference_slices(self, img_path, mask_path, slice_num):
volume_name = ''.join(img_path.split('-')[:-1])
ref_slices, ref_msks = [], []
reference_slices = self.reference_slices.get(volume_name, [])
for ref_slice in reference_slices:
ref_img_path, ref_msk_path, _ = ref_slice
ref_img = Image.open(os.path.join(self.img_folder, ref_img_path)).convert('RGB')
ref_img = transforms.Resize((self.args.image_size, self.args.image_size))(ref_img)
ref_img = self.transform_img(ref_img)
ref_img = torch.unsqueeze(ref_img, 0)
ref_msk = Image.open(os.path.join(self.mask_folder, ref_msk_path)).convert('L')
ref_msk = transforms.Resize((self.args.image_size, self.args.image_size), InterpolationMode.NEAREST)(ref_msk)
ref_msk = torch.tensor(ref_msk, dtype=torch.long)
ref_msks.append(torch.unsqueeze(ref_msk, 0))
img = torch.cat(ref_slices, dim=0)
msk = torch.cat(ref_msks, dim=0)
return img, msk
def remap_classes_sequentially(self, mask, label_frequencies):
# Apply the mapping to the mask
remapped_mask = mask.copy()
for old_cls, new_cls in self.old_cls_to_new_cls.items():
remapped_mask[mask == old_cls] = new_cls
return remapped_mask
def prepare_output(self, img, msk, img_path, mask_path, attention_map):
# Normalize the image
img = (img - img.min()) / (img.max() - img.min() + 1e-8)
img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
msk = np.array(msk, dtype=int)
#print('ori_msk:',np.unique(msk))
if self.label_frequency_path:
msk = self.remap_classes_sequentially(msk,self.label_frequencies) # Assuming msk is already using updated IDs
#print('new_msk------------------------:',self.old_cls_to_new_cls)
# Prepare one-hot encoding for the remapped classes
unique_classes = np.unique(msk).tolist()
if 0 in unique_classes:
unique_classes.remove(0)
if len(unique_classes) > 0:
selected_dic = {k: self.label_dic[k] for k in unique_classes if k in self.label_dic}
else:
selected_dic = {}
if self.targets[0] == 'random':
mask_cls, selected_label, cls_one_hot = self.handle_random_target(msk, unique_classes, selected_dic)
elif self.targets[0] in self.label_name_list:
selected_label = self.targets[0]
mask_cls = np.array(msk == self.cls, dtype=int)
cls_one_hot = torch.zeros(len(self.label_dic), dtype=torch.long)
cls_one_hot[self.cls - 1] = 1
else:
selected_label = self.targets[0]
mask_cls = msk
cls_one_hot = torch.zeros(len(self.label_dic), dtype=torch.long)
# Handle prompts
if self.if_prompt:
prompt, mask_now, mask_cls = self.generate_prompt(mask_cls)
ref_msk,_ = torch.max(mask_now>0,dim=0)
return_dict = {'image': img, 'mask': mask_now, 'selected_label_name': selected_label,
'cls_one_hot': cls_one_hot, 'prompt': prompt, 'img_name': img_path,
'mask_ori': msk, 'mask_cls': mask_cls, 'all_label_dic': selected_dic,'ref_mask':ref_msk}
else:
if len(mask_cls.shape)==2:
msk = torch.unsqueeze(torch.tensor(mask_cls,dtype=torch.long),0)
elif len(mask_cls.shape)==4:
msk = torch.squeeze(torch.tensor(mask_cls,dtype=torch.long))
else:
msk = torch.tensor(mask_cls,dtype=torch.long)
ref_msk,_ = torch.max(msk>0,dim=0)
#print('unique mask values:',msk.unique())
return_dict = {'image': img, 'mask': msk, 'selected_label_name': selected_label,
'cls_one_hot': cls_one_hot, 'img_name': img_path, 'mask_ori': msk,'ref_mask':ref_msk}
return return_dict
def generate_prompt(self, mask_cls):
if self.prompt_type == 'point':
prompt, mask_now = get_first_prompt(mask_cls, region_type=self.region_type, prompt_num=self.prompt_num)
elif self.prompt_type == 'box':
prompt, mask_now = get_top_boxes(mask_cls, region_type=self.region_type, prompt_num=self.prompt_num)
else:
prompt = mask_now = None
# Handling the shape of mask_now for return
if mask_now is not None:
if len(mask_now.shape) == 2:
mask_now = torch.unsqueeze(torch.tensor(mask_now, dtype=torch.long), 0)
mask_cls = torch.unsqueeze(torch.tensor(mask_cls, dtype=torch.long), 0)
elif len(mask_now.shape) == 4:
mask_now = torch.squeeze(torch.tensor(mask_now, dtype=torch.long))
else:
mask_now = torch.tensor(mask_now, dtype=torch.long)
mask_cls = torch.tensor(mask_cls, dtype=torch.long)
return prompt, mask_now, mask_cls
def handle_random_target(self, msk, unique_classes, selected_dic):
if len(unique_classes) > 0:
random_selected_cls = random.choice(unique_classes)
selected_label = selected_dic[random_selected_cls]
mask_cls = np.array(msk == random_selected_cls, dtype=int)
cls_one_hot = torch.zeros(len(self.label_dic), dtype=torch.long)
cls_one_hot[random_selected_cls - 1] = 1
else:
selected_label = None
mask_cls = torch.zeros_like(msk) # assuming msk is already a numpy array
cls_one_hot = torch.zeros(len(self.label_dic), dtype=torch.long)
return mask_cls, selected_label, cls_one_hot