|
a |
|
b/demo.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"id": "fbb3c1a2", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"## Package Installation" |
|
|
9 |
] |
|
|
10 |
}, |
|
|
11 |
{ |
|
|
12 |
"cell_type": "code", |
|
|
13 |
"execution_count": null, |
|
|
14 |
"id": "f5678569", |
|
|
15 |
"metadata": {}, |
|
|
16 |
"outputs": [], |
|
|
17 |
"source": [ |
|
|
18 |
"%pip install -r requirements.txt" |
|
|
19 |
] |
|
|
20 |
}, |
|
|
21 |
{ |
|
|
22 |
"cell_type": "code", |
|
|
23 |
"execution_count": 73, |
|
|
24 |
"id": "cef2a006-01b3-48ec-a631-ba22fcbec5a4", |
|
|
25 |
"metadata": { |
|
|
26 |
"tags": [] |
|
|
27 |
}, |
|
|
28 |
"outputs": [], |
|
|
29 |
"source": [ |
|
|
30 |
"from models.sam import SamPredictor, sam_model_registry\n", |
|
|
31 |
"from models.sam.modeling.prompt_encoder import attention_fusion\n", |
|
|
32 |
"import numpy as np\n", |
|
|
33 |
"import os\n", |
|
|
34 |
"import torch\n", |
|
|
35 |
"import torchvision\n", |
|
|
36 |
"import matplotlib.pyplot as plt\n", |
|
|
37 |
"from torchvision import transforms\n", |
|
|
38 |
"from PIL import Image\n", |
|
|
39 |
"import matplotlib.pyplot as plt\n", |
|
|
40 |
"from pathlib import Path\n", |
|
|
41 |
"from dsc import dice_coeff\n", |
|
|
42 |
"import torchio as tio\n", |
|
|
43 |
"import nrrd\n", |
|
|
44 |
"import PIL\n", |
|
|
45 |
"import cfg\n", |
|
|
46 |
"from funcs import *\n", |
|
|
47 |
"from predict_funs import *\n", |
|
|
48 |
"args = cfg.parse_args()\n", |
|
|
49 |
"from monai.networks.nets import VNet\n", |
|
|
50 |
"args.if_mask_decoder_adapter=True\n", |
|
|
51 |
"args.if_encoder_adapter = True\n", |
|
|
52 |
"args.decoder_adapt_depth = 2\n", |
|
|
53 |
"%matplotlib inline" |
|
|
54 |
] |
|
|
55 |
}, |
|
|
56 |
{ |
|
|
57 |
"cell_type": "markdown", |
|
|
58 |
"id": "34c4f647", |
|
|
59 |
"metadata": {}, |
|
|
60 |
"source": [ |
|
|
61 |
"## Load models" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": null, |
|
|
67 |
"id": "9a578226-354b-4833-bd17-3f57ff143ee9", |
|
|
68 |
"metadata": { |
|
|
69 |
"tags": [] |
|
|
70 |
}, |
|
|
71 |
"outputs": [], |
|
|
72 |
"source": [ |
|
|
73 |
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", |
|
|
74 |
"print(device)\n", |
|
|
75 |
"checkpoint_directory = './' # path to your checkpoint\n", |
|
|
76 |
"img_folder = os.path.join('images')\n", |
|
|
77 |
"gt_msk_folder = os.path.join('masks')\n", |
|
|
78 |
"predicted_msk_folder = os.path.join('predicted_masks')\n", |
|
|
79 |
"cls = 1\n", |
|
|
80 |
"\n", |
|
|
81 |
"sam_fine_tune = sam_model_registry[\"vit_t\"](args,checkpoint=os.path.join('mobile_sam.pt'),num_classes=2)\n", |
|
|
82 |
"sam_fine_tune.attention_fusion = attention_fusion() \n", |
|
|
83 |
"sam_fine_tune.load_state_dict(torch.load(os.path.join(checkpoint_directory,'bone_sam.pth'),map_location=torch.device(device)), strict = True)\n", |
|
|
84 |
"sam_fine_tune = sam_fine_tune.to(device).eval()\n", |
|
|
85 |
"\n", |
|
|
86 |
"vnet = VNet().to(device)\n", |
|
|
87 |
"model_directory = \"./\"\n", |
|
|
88 |
"vnet.load_state_dict(torch.load(os.path.join(model_directory,'atten.pth'),map_location=torch.device(device)))" |
|
|
89 |
] |
|
|
90 |
}, |
|
|
91 |
{ |
|
|
92 |
"cell_type": "markdown", |
|
|
93 |
"id": "755aea6f-151c-4872-81cb-a4ef66973a15", |
|
|
94 |
"metadata": {}, |
|
|
95 |
"source": [ |
|
|
96 |
"## 2D Slice Prediction & Evaluation" |
|
|
97 |
] |
|
|
98 |
}, |
|
|
99 |
{ |
|
|
100 |
"cell_type": "code", |
|
|
101 |
"execution_count": 75, |
|
|
102 |
"id": "7f410bb5-b33f-4d98-a1be-caf578cfa7b7", |
|
|
103 |
"metadata": { |
|
|
104 |
"tags": [] |
|
|
105 |
}, |
|
|
106 |
"outputs": [], |
|
|
107 |
"source": [ |
|
|
108 |
"def evaluateSlicePrediction(mask_pred, mask_name, slice_id):\n", |
|
|
109 |
" voxels, header = nrrd.read(os.path.join(gt_msk_folder,mask_name))\n", |
|
|
110 |
" mask_gt = voxels\n", |
|
|
111 |
"\n", |
|
|
112 |
" msk = Image.fromarray(mask_gt[:,:,slice_id].astype(np.uint8), 'L')\n", |
|
|
113 |
" msk = transforms.Resize((256,256))(msk)\n", |
|
|
114 |
" msk_gt = (transforms.ToTensor()(msk)>0).float()\n", |
|
|
115 |
"\n", |
|
|
116 |
" dsc_gt = dice_coeff(mask_pred.cpu(), msk_gt).item()\n", |
|
|
117 |
" \n", |
|
|
118 |
" print(\"dsc_gt:\", dsc_gt)\n", |
|
|
119 |
" return msk_gt, dsc_gt\n", |
|
|
120 |
"\n", |
|
|
121 |
"def predictSlice(image_name, lower_percentile, upper_percentile, slice_id, attention_enabled):\n", |
|
|
122 |
" \n", |
|
|
123 |
" image1_vol = tio.ScalarImage(os.path.join(img_folder, image_name))\n", |
|
|
124 |
" print('vol shape: %s vol spacing %s' %(image1_vol.shape,image1_vol.spacing))\n", |
|
|
125 |
"\n", |
|
|
126 |
" image_tensor = image1_vol.data\n", |
|
|
127 |
" lower_bound = torch_percentile(image_tensor, lower_percentile)\n", |
|
|
128 |
" upper_bound = torch_percentile(image_tensor, upper_percentile)\n", |
|
|
129 |
"\n", |
|
|
130 |
" # Clip the data\n", |
|
|
131 |
" image_tensor = torch.clamp(image_tensor, lower_bound, upper_bound)\n", |
|
|
132 |
"\n", |
|
|
133 |
" # Normalize the data to [0, 1] \n", |
|
|
134 |
" image_tensor = (image_tensor - lower_bound) / (upper_bound - lower_bound)\n", |
|
|
135 |
"\n", |
|
|
136 |
" image1_vol.set_data(image_tensor)\n", |
|
|
137 |
" atten_map= pred_attention(image1_vol,vnet,slice_id,device)\n", |
|
|
138 |
" \n", |
|
|
139 |
" atten_map = torch.unsqueeze(torch.tensor(atten_map),0).float().to(device)\n", |
|
|
140 |
" print(atten_map.device)\n", |
|
|
141 |
" if attention_enabled:\n", |
|
|
142 |
" ori_img,pred_1,voxel_spacing1,Pil_img1,slice_id1 = evaluate_1_volume_withattention(image1_vol,sam_fine_tune,device,slice_id=slice_id,atten_map=atten_map)\n", |
|
|
143 |
" else:\n", |
|
|
144 |
" ori_img,pred_1,voxel_spacing1,Pil_img1,slice_id1 = evaluate_1_volume_withattention(image1_vol,sam_fine_tune,device,slice_id=slice_id)\n", |
|
|
145 |
" \n", |
|
|
146 |
" mask_pred = ((pred_1>0)==cls).float().cpu()\n", |
|
|
147 |
"\n", |
|
|
148 |
" return ori_img, mask_pred, atten_map\n", |
|
|
149 |
"\n", |
|
|
150 |
"def visualizeSlicePrediction(ori_img, image_name, atten_map, msk_gt, mask_pred, dsc_gt):\n", |
|
|
151 |
" image = np.rot90(torchvision.transforms.Resize((args.out_size,args.out_size))(ori_img)[0])\n", |
|
|
152 |
" image_3d = np.repeat(np.array(image*255,dtype=np.uint8).copy()[:, :, np.newaxis], 3, axis=2)\n", |
|
|
153 |
"\n", |
|
|
154 |
" pred_mask_auto = (mask_pred[0])*255\n", |
|
|
155 |
" mask = (msk_gt.cpu()[0]>0)*255\n", |
|
|
156 |
"\n", |
|
|
157 |
" target_prediction = [103,169,237] \n", |
|
|
158 |
" image_pred_auto = drawContour(image_3d.copy(), np.rot90(pred_mask_auto),target_prediction,size=-1,a=0.6)\n", |
|
|
159 |
"\n", |
|
|
160 |
" target_prediction = [100,255,106] \n", |
|
|
161 |
" image_mask = drawContour(image_3d.copy(),np.rot90(mask),target_prediction,size=-1,a=0.6)\n", |
|
|
162 |
"\n", |
|
|
163 |
" fig, a = plt.subplots(1,4, figsize=(20,15))\n", |
|
|
164 |
"\n", |
|
|
165 |
" a[0].imshow(image,cmap='gray',vmin=0, vmax=1)\n", |
|
|
166 |
" a[0].set_title(image_name)\n", |
|
|
167 |
" a[0].axis(False)\n", |
|
|
168 |
"\n", |
|
|
169 |
" a[1].imshow(image_mask,cmap='gray',vmin=0, vmax=255)\n", |
|
|
170 |
" a[1].set_title('gt_mask',fontsize=10)\n", |
|
|
171 |
" a[1].axis(False)\n", |
|
|
172 |
"\n", |
|
|
173 |
" a[2].imshow(image_pred_auto,cmap='gray',vmin=0, vmax=255)\n", |
|
|
174 |
" a[2].set_title('pre_mask_auto, dsc %.2f'%(dsc_gt),fontsize=10)\n", |
|
|
175 |
" a[2].axis(False)\n", |
|
|
176 |
"\n", |
|
|
177 |
" a[3].imshow(np.rot90(atten_map.cpu()[0]),vmin=0, vmax=1,cmap='coolwarm')\n", |
|
|
178 |
" a[3].set_title('atten_map',fontsize=10)\n", |
|
|
179 |
" a[3].axis(False)\n", |
|
|
180 |
"\n", |
|
|
181 |
" plt.tight_layout()" |
|
|
182 |
] |
|
|
183 |
}, |
|
|
184 |
{ |
|
|
185 |
"cell_type": "code", |
|
|
186 |
"execution_count": null, |
|
|
187 |
"id": "2f5a3d21", |
|
|
188 |
"metadata": {}, |
|
|
189 |
"outputs": [], |
|
|
190 |
"source": [ |
|
|
191 |
"ori_img, predictedSliceMask, atten_map = predictSlice(\n", |
|
|
192 |
" image_name = '2.nii.gz', \n", |
|
|
193 |
" lower_percentile = 1,\n", |
|
|
194 |
" upper_percentile = 99,\n", |
|
|
195 |
" slice_id = 50, # slice number\n", |
|
|
196 |
" attention_enabled = True, # if you want to use the depth attention\n", |
|
|
197 |
")\n", |
|
|
198 |
"\n", |
|
|
199 |
"msk_gt, dsc_gt = evaluateSlicePrediction(\n", |
|
|
200 |
" mask_pred = predictedSliceMask, \n", |
|
|
201 |
" mask_name = '2.nrrd', \n", |
|
|
202 |
" slice_id = 50\n", |
|
|
203 |
")\n", |
|
|
204 |
"\n", |
|
|
205 |
"visualizeSlicePrediction(\n", |
|
|
206 |
" ori_img=ori_img, \n", |
|
|
207 |
" image_name='2.nii.gz', \n", |
|
|
208 |
" atten_map=atten_map, \n", |
|
|
209 |
" msk_gt=msk_gt, \n", |
|
|
210 |
" mask_pred=predictedSliceMask, \n", |
|
|
211 |
" dsc_gt=dsc_gt\n", |
|
|
212 |
")" |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "markdown", |
|
|
217 |
"id": "58216ba5", |
|
|
218 |
"metadata": {}, |
|
|
219 |
"source": [ |
|
|
220 |
"## 3D Volume Prediction & Evaluation" |
|
|
221 |
] |
|
|
222 |
}, |
|
|
223 |
{ |
|
|
224 |
"cell_type": "code", |
|
|
225 |
"execution_count": 77, |
|
|
226 |
"id": "d551caea", |
|
|
227 |
"metadata": {}, |
|
|
228 |
"outputs": [], |
|
|
229 |
"source": [ |
|
|
230 |
"def predictVolume(image_name, lower_percentile, upper_percentile):\n", |
|
|
231 |
" dsc_gt = 0\n", |
|
|
232 |
" image1_vol = tio.ScalarImage(os.path.join(img_folder,image_name))\n", |
|
|
233 |
" print('vol shape: %s vol spacing %s' %(image1_vol.shape,image1_vol.spacing))\n", |
|
|
234 |
"\n", |
|
|
235 |
" # Define the percentiles\n", |
|
|
236 |
" image_tensor = image1_vol.data\n", |
|
|
237 |
" lower_bound = torch_percentile(image_tensor, lower_percentile)\n", |
|
|
238 |
" upper_bound = torch_percentile(image_tensor, upper_percentile)\n", |
|
|
239 |
"\n", |
|
|
240 |
" # Clip the data\n", |
|
|
241 |
" image_tensor = torch.clamp(image_tensor, lower_bound, upper_bound)\n", |
|
|
242 |
" # Normalize the data to [0, 1] \n", |
|
|
243 |
" image_tensor = (image_tensor - lower_bound) / (upper_bound - lower_bound)\n", |
|
|
244 |
" image1_vol.set_data(image_tensor)\n", |
|
|
245 |
" \n", |
|
|
246 |
" mask_vol_numpy = np.zeros(image1_vol.shape)\n", |
|
|
247 |
" id_list = list(range(image1_vol.shape[3]))\n", |
|
|
248 |
" for id in id_list:\n", |
|
|
249 |
" atten_map = pred_attention(image1_vol,vnet,id,device)\n", |
|
|
250 |
" atten_map = torch.unsqueeze(torch.tensor(atten_map),0).float().to(device)\n", |
|
|
251 |
" \n", |
|
|
252 |
" ori_img,pred_1,voxel_spacing1,Pil_img1,slice_id1 = evaluate_1_volume_withattention(image1_vol,sam_fine_tune,device,slice_id=id,atten_map=atten_map)\n", |
|
|
253 |
" img1_size = Pil_img1.size\n", |
|
|
254 |
" mask_pred = ((pred_1>0)==cls).float().cpu()\n", |
|
|
255 |
" pil_mask1 = Image.fromarray(np.array(mask_pred[0],dtype=np.uint8),'L').resize(img1_size,resample= PIL.Image.NEAREST)\n", |
|
|
256 |
" mask_vol_numpy[0,:,:,id] = np.asarray(pil_mask1)\n", |
|
|
257 |
" \n", |
|
|
258 |
" mask_vol = tio.LabelMap(tensor=torch.tensor(mask_vol_numpy,dtype=torch.int), affine=image1_vol.affine)\n", |
|
|
259 |
" mask_save_folder = os.path.join(predicted_msk_folder,'/'.join(image_name.split('/')[:-1]))\n", |
|
|
260 |
" Path(mask_save_folder).mkdir(parents=True, exist_ok = True)\n", |
|
|
261 |
" mask_vol.save(os.path.join(mask_save_folder,image_name.split('/')[-1].replace('.nii.gz','_predicted_SAMatten_paired.nrrd')))\n", |
|
|
262 |
" return mask_vol" |
|
|
263 |
] |
|
|
264 |
}, |
|
|
265 |
{ |
|
|
266 |
"cell_type": "code", |
|
|
267 |
"execution_count": 78, |
|
|
268 |
"id": "c48e328a", |
|
|
269 |
"metadata": {}, |
|
|
270 |
"outputs": [], |
|
|
271 |
"source": [ |
|
|
272 |
"def predictAndEvaluateVolume(image_name, mask_name, lower_percentile, upper_percentile):\n", |
|
|
273 |
" dsc_gt = 0\n", |
|
|
274 |
" image1_vol = tio.ScalarImage(os.path.join(img_folder,image_name))\n", |
|
|
275 |
" print('vol shape: %s vol spacing %s' %(image1_vol.shape,image1_vol.spacing))\n", |
|
|
276 |
"\n", |
|
|
277 |
" # Define the percentiles\n", |
|
|
278 |
" image_tensor = image1_vol.data\n", |
|
|
279 |
" lower_bound = torch_percentile(image_tensor, lower_percentile)\n", |
|
|
280 |
" upper_bound = torch_percentile(image_tensor, upper_percentile)\n", |
|
|
281 |
"\n", |
|
|
282 |
" # Clip the data\n", |
|
|
283 |
" image_tensor = torch.clamp(image_tensor, lower_bound, upper_bound)\n", |
|
|
284 |
" # Normalize the data to [0, 1] \n", |
|
|
285 |
" image_tensor = (image_tensor - lower_bound) / (upper_bound - lower_bound)\n", |
|
|
286 |
" image1_vol.set_data(image_tensor)\n", |
|
|
287 |
" \n", |
|
|
288 |
" voxels, header = nrrd.read(os.path.join(gt_msk_folder,mask_name))\n", |
|
|
289 |
" mask_gt = voxels\n", |
|
|
290 |
" mask_vol_numpy = np.zeros(image1_vol.shape)\n", |
|
|
291 |
" id_list = list(range(image1_vol.shape[3]))\n", |
|
|
292 |
" for id in id_list:\n", |
|
|
293 |
" atten_map = pred_attention(image1_vol,vnet,id,device)\n", |
|
|
294 |
" atten_map = torch.unsqueeze(torch.tensor(atten_map),0).float().to(device)\n", |
|
|
295 |
" \n", |
|
|
296 |
" ori_img,pred_1,voxel_spacing1,Pil_img1,slice_id1 = evaluate_1_volume_withattention(image1_vol,sam_fine_tune,device,slice_id=id,atten_map=atten_map)\n", |
|
|
297 |
" img1_size = Pil_img1.size\n", |
|
|
298 |
"\n", |
|
|
299 |
" mask_pred = ((pred_1>0)==cls).float().cpu()\n", |
|
|
300 |
" msk = Image.fromarray(mask_gt[:,:,id].astype(np.uint8), 'L')\n", |
|
|
301 |
" msk = transforms.Resize((256,256))(msk)\n", |
|
|
302 |
" msk_gt = (transforms.ToTensor()(msk)>0).float().cpu()\n", |
|
|
303 |
" dsc_gt += dice_coeff(mask_pred.cpu(),msk_gt).item()\n", |
|
|
304 |
" pil_mask1 = Image.fromarray(np.array(mask_pred[0],dtype=np.uint8),'L').resize(img1_size,resample= PIL.Image.NEAREST)\n", |
|
|
305 |
" mask_vol_numpy[0,:,:,id] = np.asarray(pil_mask1)\n", |
|
|
306 |
" \n", |
|
|
307 |
" mask_vol = tio.LabelMap(tensor=torch.tensor(mask_vol_numpy,dtype=torch.int), affine=image1_vol.affine)\n", |
|
|
308 |
" mask_save_folder = os.path.join(predicted_msk_folder,'/'.join(image_name.split('/')[:-1]))\n", |
|
|
309 |
" Path(mask_save_folder).mkdir(parents=True,exist_ok = True)\n", |
|
|
310 |
" mask_vol.save(os.path.join(mask_save_folder,image_name.split('/')[-1].replace('.nii.gz','_predicted_SAMatten_paired.nrrd')))\n", |
|
|
311 |
" dsc_gt /= len(id_list)\n", |
|
|
312 |
" gt_vol = tio.LabelMap(tensor=torch.unsqueeze(torch.Tensor(mask_gt>0),0), affine=image1_vol.affine)\n", |
|
|
313 |
" dsc_vol = dice_coeff(mask_vol.data.float().cpu(),gt_vol.data).item()\n", |
|
|
314 |
" print('volume %s: slice_wise_dsc %.2f; vol_wise_dsc %.2f'%(image_name,dsc_gt,dsc_vol))" |
|
|
315 |
] |
|
|
316 |
}, |
|
|
317 |
{ |
|
|
318 |
"cell_type": "code", |
|
|
319 |
"execution_count": null, |
|
|
320 |
"id": "4a2f4789", |
|
|
321 |
"metadata": {}, |
|
|
322 |
"outputs": [], |
|
|
323 |
"source": [ |
|
|
324 |
"mask = predictVolume(\n", |
|
|
325 |
" image_name = '2.nii.gz', \n", |
|
|
326 |
" lower_percentile = 1, \n", |
|
|
327 |
" upper_percentile = 99\n", |
|
|
328 |
")" |
|
|
329 |
] |
|
|
330 |
}, |
|
|
331 |
{ |
|
|
332 |
"cell_type": "code", |
|
|
333 |
"execution_count": null, |
|
|
334 |
"id": "f5352a6c", |
|
|
335 |
"metadata": {}, |
|
|
336 |
"outputs": [], |
|
|
337 |
"source": [ |
|
|
338 |
"predictAndEvaluateVolume(\n", |
|
|
339 |
" image_name = '2.nii.gz', \n", |
|
|
340 |
" mask_name = '2.nrrd',\n", |
|
|
341 |
" lower_percentile = 1, \n", |
|
|
342 |
" upper_percentile = 99\n", |
|
|
343 |
")" |
|
|
344 |
] |
|
|
345 |
} |
|
|
346 |
], |
|
|
347 |
"metadata": { |
|
|
348 |
"kernelspec": { |
|
|
349 |
"display_name": "Python 3", |
|
|
350 |
"language": "python", |
|
|
351 |
"name": "python3" |
|
|
352 |
}, |
|
|
353 |
"language_info": { |
|
|
354 |
"codemirror_mode": { |
|
|
355 |
"name": "ipython", |
|
|
356 |
"version": 3 |
|
|
357 |
}, |
|
|
358 |
"file_extension": ".py", |
|
|
359 |
"mimetype": "text/x-python", |
|
|
360 |
"name": "python", |
|
|
361 |
"nbconvert_exporter": "python", |
|
|
362 |
"pygments_lexer": "ipython3", |
|
|
363 |
"version": "3.9.10" |
|
|
364 |
} |
|
|
365 |
}, |
|
|
366 |
"nbformat": 4, |
|
|
367 |
"nbformat_minor": 5 |
|
|
368 |
} |