a b/README.md
1
# SAML & A Multi-site Dataset for Prostate MRI Segmentation
2
by [Quande Liu](https://github.com/liuquande), [Qi Dou](http://www.cse.cuhk.edu.hk/~qdou/), [Pheng-Ann Heng](http://www.cse.cuhk.edu.hk/~pheng/). 
3
4
### Introduction
5
6
* The Tensorflow implementation for our MICCAI 2020 paper '[Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains](https://arxiv.org/pdf/2007.02035.pdf)'. 
7
8
<p align="center">
9
  <img src="figure/saml.png"  width="650"/>
10
</p>
11
12
* A well-organized multi-site dataset (from six data sources) for prostate MRI segmentation, that can support research in various problem settings with need of multi-site data, such as Domain Generalization, Multi-site Learning and Life-long Learning, etc. For more details and downloading link of the dataset, please [Find Here](https://liuquande.github.io/SAML/).
13
    
14
15
<p align="center">
16
  <img src="figure/protocol.png"  width="650"/>
17
</p>
18
  
19
20
### Setup & Usage for the Code
21
22
1. Check dependencies:
23
   ```shell
24
   python==2.7.17
25
   numpy==1.16.6
26
   scipy==1.2.1
27
   tensorflow-gpu==1.12.0
28
   tensorboard==1.12.2
29
   SimpleITK==1.2.0
30
   ```
31
2. To train the model, you need to specify the training configurations (can simply use the default setting) in main.py, then run:
32
   ```shell
33
   python main.py --phase=train
34
   ```
35
36
2. To evaluate the model, run:
37
   ```shell
38
   python main.py --phase=test --restore_model='/path/to/test_model.cpkt'
39
   ```
40
   You will see the output results in the folder `./output/`.
41
42
### Citation
43
If this repository is useful for your research, please cite:
44
45
```
46
@article{liu2020shape,
47
  title={Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains},
48
  author={Liu, Quande and Dou, Qi and Heng, Pheng-Ann},
49
  journal={International Conference on Medical Image Computing and Computer Assisted Intervention},
50
  year={2020}
51
}
52
```
53
54
### Questions
55
56
For further question about the code or dataset, please contact 'qdliu@cse.cuhk.edu.hk'