|
a/README.md |
|
b/README.md |
1 |
# SAML & A Multi-site Dataset for Prostate MRI Segmentation |
1 |
# SAML & A Multi-site Dataset for Prostate MRI Segmentation
|
2 |
by [Quande Liu](https://github.com/liuquande), [Qi Dou](http://www.cse.cuhk.edu.hk/~qdou/), [Pheng-Ann Heng](http://www.cse.cuhk.edu.hk/~pheng/). |
2 |
by [Quande Liu](https://github.com/liuquande), [Qi Dou](http://www.cse.cuhk.edu.hk/~qdou/), [Pheng-Ann Heng](http://www.cse.cuhk.edu.hk/~pheng/). |
3 |
|
3 |
|
4 |
### Introduction |
4 |
### Introduction |
5 |
|
5 |
|
6 |
* The Tensorflow implementation for our MICCAI 2020 paper '[Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains](https://arxiv.org/pdf/2007.02035.pdf)'. |
6 |
* The Tensorflow implementation for our MICCAI 2020 paper '[Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains](https://arxiv.org/pdf/2007.02035.pdf)'. |
7 |
|
7 |
|
8 |
<p align="center"> |
8 |
<p align="center">
|
9 |
<img src="figure/saml.png" width="650"/> |
9 |
<img src="https://github.com/liuquande/SAML/blob/master/figure/saml.png?raw=true" width="650"/>
|
10 |
</p> |
10 |
</p> |
11 |
|
11 |
|
12 |
* A well-organized multi-site dataset (from six data sources) for prostate MRI segmentation, that can support research in various problem settings with need of multi-site data, such as Domain Generalization, Multi-site Learning and Life-long Learning, etc. For more details and downloading link of the dataset, please [Find Here](https://liuquande.github.io/SAML/). |
12 |
* A well-organized multi-site dataset (from six data sources) for prostate MRI segmentation, that can support research in various problem settings with need of multi-site data, such as Domain Generalization, Multi-site Learning and Life-long Learning, etc. For more details and downloading link of the dataset, please [Find Here](https://liuquande.github.io/SAML/).
|
13 |
|
13 |
|
14 |
|
14 |
|
15 |
<p align="center"> |
15 |
<p align="center">
|
16 |
<img src="figure/protocol.png" width="650"/> |
16 |
<img src="https://github.com/liuquande/SAML/blob/master/figure/protocol.png?raw=true" width="650"/>
|
17 |
</p> |
17 |
</p>
|
18 |
|
18 |
|
19 |
|
19 |
|
20 |
### Setup & Usage for the Code |
20 |
### Setup & Usage for the Code |
21 |
|
21 |
|
22 |
1. Check dependencies: |
22 |
1. Check dependencies:
|
23 |
```shell |
23 |
```shell
|
24 |
python==2.7.17 |
24 |
python==2.7.17
|
25 |
numpy==1.16.6 |
25 |
numpy==1.16.6
|
26 |
scipy==1.2.1 |
26 |
scipy==1.2.1
|
27 |
tensorflow-gpu==1.12.0 |
27 |
tensorflow-gpu==1.12.0
|
28 |
tensorboard==1.12.2 |
28 |
tensorboard==1.12.2
|
29 |
SimpleITK==1.2.0 |
29 |
SimpleITK==1.2.0
|
30 |
``` |
30 |
```
|
31 |
2. To train the model, you need to specify the training configurations (can simply use the default setting) in main.py, then run: |
31 |
2. To train the model, you need to specify the training configurations (can simply use the default setting) in main.py, then run:
|
32 |
```shell |
32 |
```shell
|
33 |
python main.py --phase=train |
33 |
python main.py --phase=train
|
34 |
``` |
34 |
``` |
35 |
|
35 |
|
36 |
2. To evaluate the model, run: |
36 |
2. To evaluate the model, run:
|
37 |
```shell |
37 |
```shell
|
38 |
python main.py --phase=test --restore_model='/path/to/test_model.cpkt' |
38 |
python main.py --phase=test --restore_model='/path/to/test_model.cpkt'
|
39 |
``` |
39 |
```
|
40 |
You will see the output results in the folder `./output/`. |
40 |
You will see the output results in the folder `./output/`. |
41 |
|
41 |
|
42 |
### Citation |
42 |
### Citation
|
43 |
If this repository is useful for your research, please cite: |
43 |
If this repository is useful for your research, please cite: |
44 |
|
44 |
|
45 |
``` |
45 |
```
|
46 |
@article{liu2020shape, |
46 |
@article{liu2020shape,
|
47 |
title={Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains}, |
47 |
title={Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains},
|
48 |
author={Liu, Quande and Dou, Qi and Heng, Pheng-Ann}, |
48 |
author={Liu, Quande and Dou, Qi and Heng, Pheng-Ann},
|
49 |
journal={International Conference on Medical Image Computing and Computer Assisted Intervention}, |
49 |
journal={International Conference on Medical Image Computing and Computer Assisted Intervention},
|
50 |
year={2020} |
50 |
year={2020}
|
51 |
} |
51 |
}
|
52 |
``` |
52 |
``` |
53 |
|
53 |
|
54 |
### Questions |
54 |
### Questions |
55 |
|
55 |
|
56 |
For further question about the code or dataset, please contact 'qdliu@cse.cuhk.edu.hk' |
56 |
For further question about the code or dataset, please contact 'qdliu@cse.cuhk.edu.hk'
|