by Quande Liu, Qi Dou, Pheng-Ann Heng.
shell
python==2.7.17
numpy==1.16.6
scipy==1.2.1
tensorflow-gpu==1.12.0
tensorboard==1.12.2
SimpleITK==1.2.0
To train the model, you need to specify the training configurations (can simply use the default setting) in main.py, then run:
shell
python main.py --phase=train
To evaluate the model, run:
shell
python main.py --phase=test --restore_model='/path/to/test_model.cpkt'
You will see the output results in the folder ./output/
.
If this repository is useful for your research, please cite:
@article{liu2020shape,
title={Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains},
author={Liu, Quande and Dou, Qi and Heng, Pheng-Ann},
journal={International Conference on Medical Image Computing and Computer Assisted Intervention},
year={2020}
}
For further question about the code or dataset, please contact 'qdliu@cse.cuhk.edu.hk'