[6969be]: / rocaseg / train_baseline.py

Download this file

447 lines (363 with data), 18.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import logging
from collections import defaultdict
import click
import numpy as np
import cv2
import torch
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from rocaseg.datasets import DatasetOAIiMoSagittal2d, sources_from_path
from rocaseg.models import dict_models
from rocaseg.components import (dict_losses, confusion_matrix, dice_score_from_cm,
dict_optimizers, CheckpointHandler)
from rocaseg.preproc import *
from rocaseg.repro import set_ultimate_seed
from rocaseg.components.mixup import mixup_criterion, mixup_data
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
logging.basicConfig()
logger = logging.getLogger('train')
logger.setLevel(logging.DEBUG)
set_ultimate_seed()
if torch.cuda.is_available():
maybe_gpu = 'cuda'
else:
maybe_gpu = 'cpu'
class ModelTrainer:
def __init__(self, config, fold_idx=None):
self.config = config
self.fold_idx = fold_idx
self.paths_weights_fold = dict()
self.paths_weights_fold['segm'] = \
os.path.join(config['path_weights'], 'segm', f'fold_{self.fold_idx}')
os.makedirs(self.paths_weights_fold['segm'], exist_ok=True)
self.path_logs_fold = \
os.path.join(config['path_logs'], f'fold_{self.fold_idx}')
os.makedirs(self.path_logs_fold, exist_ok=True)
self.handlers_ckpt = dict()
self.handlers_ckpt['segm'] = CheckpointHandler(self.paths_weights_fold['segm'])
paths_ckpt_sel = dict()
paths_ckpt_sel['segm'] = self.handlers_ckpt['segm'].get_last_ckpt()
# Initialize and configure the models
self.models = dict()
self.models['segm'] = (dict_models[config['model_segm']]
(input_channels=self.config['input_channels'],
output_channels=self.config['output_channels'],
center_depth=self.config['center_depth'],
pretrained=self.config['pretrained'],
path_pretrained=self.config['path_pretrained_segm'],
restore_weights=self.config['restore_weights'],
path_weights=paths_ckpt_sel['segm']))
self.models['segm'] = nn.DataParallel(self.models['segm'])
self.models['segm'] = self.models['segm'].to(maybe_gpu)
# Configure the training
self.optimizers = dict()
self.optimizers['segm'] = (dict_optimizers['adam'](
self.models['segm'].parameters(),
lr=self.config['lr_segm'],
weight_decay=self.config['wd_segm']))
self.lr_update_rule = {30: 0.1}
self.losses = dict()
self.losses['segm'] = dict_losses[self.config['loss_segm']](
num_classes=self.config['output_channels'],
)
self.losses['segm'] = self.losses['segm'].to(maybe_gpu)
self.tensorboard = SummaryWriter(self.path_logs_fold)
def run_one_epoch(self, epoch_idx, loaders):
name_ds = list(loaders.keys())[0]
fnames_acc = defaultdict(list)
metrics_acc = dict()
metrics_acc['samplew'] = defaultdict(list)
metrics_acc['batchw'] = defaultdict(list)
metrics_acc['datasetw'] = defaultdict(list)
metrics_acc['datasetw'][f'{name_ds}__cm'] = \
np.zeros((self.config['output_channels'],) * 2, dtype=np.uint32)
prog_bar_params = {'postfix': {'epoch': epoch_idx}, }
if self.models['segm'].training:
# ------------------------ Training regime ------------------------
loader_ds = loaders[name_ds]['train']
steps_ds = len(loader_ds)
prog_bar_params.update({'total': steps_ds,
'desc': f'Train, epoch {epoch_idx}'})
loader_ds_iter = iter(loader_ds)
with tqdm(**prog_bar_params) as prog_bar:
for step_idx in range(steps_ds):
self.optimizers['segm'].zero_grad()
data_batch_ds = next(loader_ds_iter)
xs_ds, ys_true_ds = data_batch_ds['xs'], data_batch_ds['ys']
fnames_acc['oai'].extend(data_batch_ds['path_image'])
ys_true_arg_ds = torch.argmax(ys_true_ds.long(), dim=1)
xs_ds = xs_ds.to(maybe_gpu)
ys_true_arg_ds = ys_true_arg_ds.to(maybe_gpu)
if not self.config['with_mixup']:
ys_pred_ds = self.models['segm'](xs_ds)
loss_segm = self.losses['segm'](input_=ys_pred_ds,
target=ys_true_arg_ds)
else:
xs_mixup, ys_mixup_a, ys_mixup_b, lambda_mixup = mixup_data(
x=xs_ds, y=ys_true_arg_ds,
alpha=self.config['mixup_alpha'], device=maybe_gpu)
ys_pred_ds = self.models['segm'](xs_mixup)
loss_segm = mixup_criterion(criterion=self.losses['segm'],
pred=ys_pred_ds,
y_a=ys_mixup_a,
y_b=ys_mixup_b,
lam=lambda_mixup)
metrics_acc['batchw']['loss'].append(loss_segm.item())
loss_segm.backward()
self.optimizers['segm'].step()
prog_bar.update(1)
else:
# ----------------------- Validation regime -----------------------
loader_ds = loaders[name_ds]['val']
steps_ds = len(loader_ds)
prog_bar_params.update({'total': steps_ds,
'desc': f'Validate, epoch {epoch_idx}'})
loader_ds_iter = iter(loader_ds)
with torch.no_grad(), tqdm(**prog_bar_params) as prog_bar:
for step_idx in range(steps_ds):
data_batch_ds = next(loader_ds_iter)
xs_ds, ys_true_ds = data_batch_ds['xs'], data_batch_ds['ys']
fnames_acc['oai'].extend(data_batch_ds['path_image'])
ys_true_arg_ds = torch.argmax(ys_true_ds.long(), dim=1)
xs_ds = xs_ds.to(maybe_gpu)
ys_true_arg_ds = ys_true_arg_ds.to(maybe_gpu)
if not self.config['with_mixup']:
ys_pred_ds = self.models['segm'](xs_ds)
loss_segm = self.losses['segm'](input_=ys_pred_ds,
target=ys_true_arg_ds)
else:
xs_mixup, ys_mixup_a, ys_mixup_b, lambda_mixup = mixup_data(
x=xs_ds, y=ys_true_arg_ds,
alpha=self.config['mixup_alpha'], device=maybe_gpu)
ys_pred_ds = self.models['segm'](xs_mixup)
loss_segm = mixup_criterion(criterion=self.losses['segm'],
pred=ys_pred_ds,
y_a=ys_mixup_a,
y_b=ys_mixup_b,
lam=lambda_mixup)
metrics_acc['batchw']['loss'].append(loss_segm.item())
# Calculate metrics
ys_pred_softmax_ds = nn.Softmax(dim=1)(ys_pred_ds)
ys_pred_softmax_np_ds = ys_pred_softmax_ds.to('cpu').numpy()
ys_pred_arg_np_ds = ys_pred_softmax_np_ds.argmax(axis=1)
ys_true_arg_np_ds = ys_true_arg_ds.to('cpu').numpy()
metrics_acc['datasetw'][f'{name_ds}__cm'] += confusion_matrix(
ys_pred_arg_np_ds, ys_true_arg_np_ds,
self.config['output_channels'])
prog_bar.update(1)
for k, v in metrics_acc['samplew'].items():
metrics_acc['samplew'][k] = np.asarray(v)
metrics_acc['datasetw'][f'{name_ds}__dice_score'] = np.asarray(
dice_score_from_cm(metrics_acc['datasetw'][f'{name_ds}__cm']))
return metrics_acc, fnames_acc
def fit(self, loaders):
epoch_idx_best = -1
loss_best = float('inf')
metrics_train_best = dict()
fnames_train_best = []
metrics_val_best = dict()
fnames_val_best = []
for epoch_idx in range(self.config['epoch_num']):
self.models = {n: m.train() for n, m in self.models.items()}
metrics_train, fnames_train = \
self.run_one_epoch(epoch_idx, loaders)
# Process the accumulated metrics
for k, v in metrics_train['batchw'].items():
if k.startswith('loss'):
metrics_train['datasetw'][k] = np.mean(np.asarray(v))
else:
logger.warning(f'Non-processed batch-wise entry: {k}')
self.models = {n: m.eval() for n, m in self.models.items()}
metrics_val, fnames_val = \
self.run_one_epoch(epoch_idx, loaders)
# Process the accumulated metrics
for k, v in metrics_val['batchw'].items():
if k.startswith('loss'):
metrics_val['datasetw'][k] = np.mean(np.asarray(v))
else:
logger.warning(f'Non-processed batch-wise entry: {k}')
# Learning rate update
for s, m in self.lr_update_rule.items():
if epoch_idx == s:
for name, optim in self.optimizers.items():
for param_group in optim.param_groups:
param_group['lr'] *= m
# Add console logging
logger.info(f'Epoch: {epoch_idx}')
for subset, metrics in (('train', metrics_train),
('val', metrics_val)):
logger.info(f'{subset} metrics:')
for k, v in metrics['datasetw'].items():
logger.info(f'{k}: \n{v}')
# Add TensorBoard logging
for subset, metrics in (('train', metrics_train),
('val', metrics_val)):
# Log only dataset-reduced metrics
for k, v in metrics['datasetw'].items():
if isinstance(v, np.ndarray):
self.tensorboard.add_scalars(
f'fold_{self.fold_idx}/{k}_{subset}',
{f'class{i}': e for i, e in enumerate(v.ravel().tolist())},
global_step=epoch_idx)
elif isinstance(v, (str, int, float)):
self.tensorboard.add_scalar(
f'fold_{self.fold_idx}/{k}_{subset}',
float(v),
global_step=epoch_idx)
else:
logger.warning(f'{k} is of unsupported dtype {v}')
for name, optim in self.optimizers.items():
for param_group in optim.param_groups:
self.tensorboard.add_scalar(
f'fold_{self.fold_idx}/learning_rate/{name}',
param_group['lr'],
global_step=epoch_idx)
# Save the model
loss_curr = metrics_val['datasetw']['loss']
if loss_curr < loss_best:
loss_best = loss_curr
epoch_idx_best = epoch_idx
metrics_train_best = metrics_train
metrics_val_best = metrics_val
fnames_train_best = fnames_train
fnames_val_best = fnames_val
self.handlers_ckpt['segm'].save_new_ckpt(
model=self.models['segm'],
model_name=self.config['model_segm'],
fold_idx=self.fold_idx,
epoch_idx=epoch_idx)
msg = (f'Finished fold {self.fold_idx} '
f'with the best loss {loss_best:.5f} '
f'on epoch {epoch_idx_best}, '
f'weights: ({self.paths_weights_fold})')
logger.info(msg)
return (metrics_train_best, fnames_train_best,
metrics_val_best, fnames_val_best)
@click.command()
@click.option('--path_data_root', default='../../data')
@click.option('--path_experiment_root', default='../../results/temporary')
@click.option('--model_segm', default='unet_lext')
@click.option('--center_depth', default=1, type=int)
@click.option('--pretrained', is_flag=True)
@click.option('--path_pretrained_segm', type=str, help='Path to .pth file')
@click.option('--restore_weights', is_flag=True)
@click.option('--input_channels', default=1, type=int)
@click.option('--output_channels', default=1, type=int)
@click.option('--dataset', type=click.Choice(
['oai_imo', 'okoa', 'maknee']), default='oai_imo')
@click.option('--mask_mode', default='all_unitibial_unimeniscus', type=str)
@click.option('--sample_mode', default='x_y', type=str)
@click.option('--loss_segm', default='multi_ce_loss')
@click.option('--lr_segm', default=0.0001, type=float)
@click.option('--wd_segm', default=5e-5, type=float)
@click.option('--optimizer_segm', default='adam')
@click.option('--batch_size', default=64, type=int)
@click.option('--epoch_size', default=1.0, type=float)
@click.option('--epoch_num', default=2, type=int)
@click.option('--fold_num', default=5, type=int)
@click.option('--fold_idx', default=-1, type=int)
@click.option('--fold_idx_ignore', multiple=True, type=int)
@click.option('--num_workers', default=1, type=int)
@click.option('--seed_trainval_test', default=0, type=int)
@click.option('--with_mixup', is_flag=True)
@click.option('--mixup_alpha', default=1, type=float)
def main(**config):
config['path_data_root'] = os.path.abspath(config['path_data_root'])
config['path_experiment_root'] = os.path.abspath(config['path_experiment_root'])
config['path_weights'] = os.path.join(config['path_experiment_root'], 'weights')
config['path_logs'] = os.path.join(config['path_experiment_root'], 'logs_train')
os.makedirs(config['path_weights'], exist_ok=True)
os.makedirs(config['path_logs'], exist_ok=True)
logging_fh = logging.FileHandler(
os.path.join(config['path_logs'], 'main_{}.log'.format(config['fold_idx'])))
logging_fh.setLevel(logging.DEBUG)
logger.addHandler(logging_fh)
# Collect the available and specified sources
sources = sources_from_path(path_data_root=config['path_data_root'],
selection=config['dataset'],
with_folds=True,
fold_num=config['fold_num'],
seed_trainval_test=config['seed_trainval_test'])
# Build a list of folds to run on
if config['fold_idx'] == -1:
fold_idcs = list(range(config['fold_num']))
else:
fold_idcs = [config['fold_idx'], ]
for g in config['fold_idx_ignore']:
fold_idcs = [i for i in fold_idcs if i != g]
# Train each fold separately
fold_scores = dict()
# Use straightforward fold allocation strategy
folds = list(sources[config['dataset']]['trainval_folds'])
for fold_idx, idcs_subsets in enumerate(folds):
if fold_idx not in fold_idcs:
continue
logger.info(f'Training fold {fold_idx}')
name_ds = config['dataset']
(sources[name_ds]['train_idcs'], sources[name_ds]['val_idcs']) = idcs_subsets
sources[name_ds]['train_df'] = \
sources[name_ds]['trainval_df'].iloc[sources[name_ds]['train_idcs']]
sources[name_ds]['val_df'] = \
sources[name_ds]['trainval_df'].iloc[sources[name_ds]['val_idcs']]
for n, s in sources.items():
logger.info('Made {} train-val split, number of samples: {}, {}'
.format(n, len(s['train_df']), len(s['val_df'])))
datasets = defaultdict(dict)
datasets[name_ds]['train'] = DatasetOAIiMoSagittal2d(
df_meta=sources[name_ds]['train_df'],
mask_mode=config['mask_mode'],
sample_mode=config['sample_mode'],
transforms=[
PercentileClippingAndToFloat(cut_min=10, cut_max=99),
CenterCrop(height=300, width=300),
HorizontalFlip(prob=.5),
GammaCorrection(gamma_range=(0.5, 1.5), prob=.5),
OneOf([
DualCompose([
Scale(ratio_range=(0.7, 0.8), prob=1.),
Scale(ratio_range=(1.5, 1.6), prob=1.),
]),
NoTransform()
]),
Crop(output_size=(300, 300)),
BilateralFilter(d=5, sigma_color=50, sigma_space=50, prob=.3),
Normalize(mean=0.252699, std=0.251142),
ToTensor(),
])
datasets[name_ds]['val'] = DatasetOAIiMoSagittal2d(
df_meta=sources[name_ds]['val_df'],
mask_mode=config['mask_mode'],
sample_mode=config['sample_mode'],
transforms=[
PercentileClippingAndToFloat(cut_min=10, cut_max=99),
CenterCrop(height=300, width=300),
Normalize(mean=0.252699, std=0.251142),
ToTensor()
])
loaders = defaultdict(dict)
loaders[name_ds]['train'] = DataLoader(
datasets[name_ds]['train'],
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers'],
drop_last=True)
loaders[name_ds]['val'] = DataLoader(
datasets[name_ds]['val'],
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=True)
trainer = ModelTrainer(config=config, fold_idx=fold_idx)
# INFO: run once before the training to compute the dataset statistics
# dataset_train.describe()
tmp = trainer.fit(loaders=loaders)
metrics_train, fnames_train, metrics_val, fnames_val = tmp
fold_scores[fold_idx] = (metrics_val['datasetw'][f'{name_ds}__dice_score'], )
trainer.tensorboard.close()
logger.info(f'Fold scores:\n{repr(fold_scores)}')
if __name__ == '__main__':
main()