[6969be]: / rocaseg / evaluate.py

Download this file

399 lines (330 with data), 16.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import logging
from glob import glob
import numpy as np
from skimage.color import label2rgb
from skimage import img_as_ubyte
from tqdm import tqdm
import click
import cv2
import tifffile
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from rocaseg.datasets import sources_from_path
from rocaseg.components import CheckpointHandler
from rocaseg.components.formats import numpy_to_nifti, png_to_numpy
from rocaseg.models import dict_models
from rocaseg.preproc import *
from rocaseg.repro import set_ultimate_seed
# The fix is a workaround to PyTorch multiprocessing issue:
# "RuntimeError: received 0 items of ancdata"
torch.multiprocessing.set_sharing_strategy('file_system')
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
logging.basicConfig()
logger = logging.getLogger('eval')
logger.setLevel(logging.INFO)
set_ultimate_seed()
if torch.cuda.is_available():
maybe_gpu = 'cuda'
else:
maybe_gpu = 'cpu'
def predict_folds(config, loader, fold_idcs):
"""Evaluate the model versus each fold
"""
for fold_idx in fold_idcs:
paths_weights_fold = dict()
paths_weights_fold['segm'] = \
os.path.join(config['path_weights'], 'segm', f'fold_{fold_idx}')
handlers_ckpt = dict()
handlers_ckpt['segm'] = CheckpointHandler(paths_weights_fold['segm'])
paths_ckpt_sel = dict()
paths_ckpt_sel['segm'] = handlers_ckpt['segm'].get_last_ckpt()
# Initialize and configure the model
model = (dict_models[config['model_segm']]
(input_channels=config['input_channels'],
output_channels=config['output_channels'],
center_depth=config['center_depth'],
pretrained=config['pretrained'],
restore_weights=config['restore_weights'],
path_weights=paths_ckpt_sel['segm']))
model = nn.DataParallel(model).to(maybe_gpu)
model.eval()
with tqdm(total=len(loader), desc=f'Eval, fold {fold_idx}') as prog_bar:
for i, data_batch in enumerate(loader):
xs, ys_true = data_batch['xs'], data_batch['ys']
xs, ys_true = xs.to(maybe_gpu), ys_true.to(maybe_gpu)
if config['model_segm'] == 'unet_lext':
ys_pred = model(xs)
elif config['model_segm'] == 'unet_lext_aux':
ys_pred, _ = model(xs)
else:
msg = f"Unknown model {config['model_segm']}"
raise ValueError(msg)
ys_pred_softmax = nn.Softmax(dim=1)(ys_pred)
ys_pred_softmax_np = ys_pred_softmax.detach().to('cpu').numpy()
data_batch['pred_softmax'] = ys_pred_softmax_np
# Rearrange the batch
data_dicts = [{k: v[n] for k, v in data_batch.items()}
for n in range(len(data_batch['image']))]
for k, data_dict in enumerate(data_dicts):
dir_base = os.path.join(
config['path_predicts'],
data_dict['patient'], data_dict['release'], data_dict['sequence'])
fname_base = os.path.splitext(
os.path.basename(data_dict['path_rel_image']))[0]
# Save the predictions
dir_predicts = os.path.join(dir_base, 'mask_folds')
if not os.path.exists(dir_predicts):
os.makedirs(dir_predicts)
fname_full = os.path.join(
dir_predicts,
f'{fname_base}_fold_{fold_idx}.tiff')
tmp = (data_dict['pred_softmax'] * 255).astype(np.uint8, casting='unsafe')
tifffile.imsave(fname_full, tmp, compress=9)
prog_bar.update(1)
def merge_predictions(config, source, loader, dict_fns,
save_plots=False, remove_foldw=False, convert_to_nifti=True):
"""Merge the predictions over all folds
"""
dir_source_root = source['path_root']
df_meta = loader.dataset.df_meta
with tqdm(total=len(df_meta), desc='Merge') as prog_bar:
for i, row in df_meta.iterrows():
dir_scan_predicts = os.path.join(
config['path_predicts'],
row['patient'], row['release'], row['sequence'])
dir_image_prep = os.path.join(dir_scan_predicts, 'image_prep')
dir_mask_prep = os.path.join(dir_scan_predicts, 'mask_prep')
dir_mask_folds = os.path.join(dir_scan_predicts, 'mask_folds')
dir_mask_foldavg = os.path.join(dir_scan_predicts, 'mask_foldavg')
dir_vis_foldavg = os.path.join(dir_scan_predicts, 'vis_foldavg')
for p in (dir_image_prep, dir_mask_prep, dir_mask_folds, dir_mask_foldavg,
dir_vis_foldavg):
if not os.path.exists(p):
os.makedirs(p)
# Find the corresponding prediction files
fname_base = os.path.splitext(os.path.basename(row['path_rel_image']))[0]
fnames_pred = glob(os.path.join(dir_mask_folds, f'{fname_base}_fold_*.*'))
# Read the reference data
image = cv2.imread(
os.path.join(dir_source_root, row['path_rel_image']),
cv2.IMREAD_GRAYSCALE)
image = dict_fns['crop'](image[None, ])[0]
image = np.squeeze(image)
if 'path_rel_mask' in row.index:
ys_true = loader.dataset.read_mask(
os.path.join(dir_source_root, row['path_rel_mask']))
if ys_true is not None:
ys_true = dict_fns['crop'](ys_true)[0]
else:
ys_true = None
# Read the fold-wise predictions
yss_pred = [tifffile.imread(f) for f in fnames_pred]
ys_pred = np.stack(yss_pred, axis=0).astype(np.float32) / 255
ys_pred = torch.from_numpy(ys_pred).unsqueeze(dim=0)
# Average the fold predictions
ys_pred = torch.mean(ys_pred, dim=1, keepdim=False)
ys_pred_softmax = ys_pred / torch.sum(ys_pred, dim=1, keepdim=True)
ys_pred_softmax_np = ys_pred_softmax.squeeze().numpy()
ys_pred_arg_np = ys_pred_softmax_np.argmax(axis=0)
# Save preprocessed input data
fname_full = os.path.join(dir_image_prep, f'{fname_base}.png')
cv2.imwrite(fname_full, image) # image
if ys_true is not None:
ys_true = ys_true.astype(np.float32)
ys_true = torch.from_numpy(ys_true).unsqueeze(dim=0)
ys_true_arg_np = ys_true.numpy().squeeze().argmax(axis=0)
fname_full = os.path.join(dir_mask_prep, f'{fname_base}.png')
cv2.imwrite(fname_full, ys_true_arg_np) # mask
fname_meta = os.path.join(config['path_predicts'], 'meta_dynamic.csv')
if not os.path.exists(fname_meta):
df_meta.to_csv(fname_meta, index=False) # metainfo
# Save ensemble prediction
fname_full = os.path.join(dir_mask_foldavg, f'{fname_base}.png')
cv2.imwrite(fname_full, ys_pred_arg_np)
# Save ensemble visualizations
if save_plots:
if ys_true is not None:
fname_full = os.path.join(
dir_vis_foldavg, f"{fname_base}_overlay_mask.png")
save_vis_overlay(image=image,
mask=ys_true_arg_np,
num_classes=config['output_channels'],
fname=fname_full)
fname_full = os.path.join(
dir_vis_foldavg, f"{fname_base}_overlay_pred.png")
save_vis_overlay(image=image,
mask=ys_pred_arg_np,
num_classes=config['output_channels'],
fname=fname_full)
if ys_true is not None:
fname_full = os.path.join(
dir_vis_foldavg, f"{fname_base}_overlay_diff.png")
save_vis_mask_diff(image=image,
mask_true=ys_true_arg_np,
mask_pred=ys_pred_arg_np,
fname=fname_full)
# Remove the fold predictions
if remove_foldw:
for f in fnames_pred:
try:
os.remove(f)
except OSError:
logger.error(f'Cannot remove {f}')
prog_bar.update(1)
# Convert the results to 3D NIfTI images
if convert_to_nifti:
df_meta = df_meta.sort_values(by=["patient", "release", "sequence", "side"])
for gb_name, gb_df in tqdm(
df_meta.groupby(["patient", "release", "sequence", "side"]),
desc="Convert to NIfTI"):
patient, release, sequence, side = gb_name
spacings = (gb_df['pixel_spacing_0'].iloc[0],
gb_df['pixel_spacing_1'].iloc[0],
gb_df['slice_thickness'].iloc[0])
dir_scan_predicts = os.path.join(config['path_predicts'],
patient, release, sequence)
for result in ("image_prep", "mask_prep", "mask_foldavg"):
pattern = os.path.join(dir_scan_predicts, result, '*.png')
path_nii = os.path.join(dir_scan_predicts, f"{result}.nii")
# Read and compose 3D image
img = png_to_numpy(pattern_fname_in=pattern, reverse=False)
# Save to NIfTI
numpy_to_nifti(stack=img, fname_out=path_nii,
spacings=spacings, rcp_to_ras=True)
def save_vis_overlay(image, mask, num_classes, fname):
# Add a sample of each class to have consistent class colors
mask[0, :num_classes] = list(range(num_classes))
overlay = label2rgb(label=mask, image=image, bg_label=0,
colors=['orangered', 'gold', 'lime', 'fuchsia'])
# Convert to uint8 to save space
overlay = img_as_ubyte(overlay)
# Save to file
if overlay.ndim == 3:
overlay = overlay[:, :, ::-1]
cv2.imwrite(fname, overlay)
def save_vis_mask_diff(image, mask_true, mask_pred, fname):
diff = np.empty_like(mask_true)
diff[(mask_true == mask_pred) & (mask_pred == 0)] = 0 # TN
diff[(mask_true == mask_pred) & (mask_pred != 0)] = 0 # TP
diff[(mask_true != mask_pred) & (mask_pred == 0)] = 2 # FP
diff[(mask_true != mask_pred) & (mask_pred != 0)] = 3 # FN
diff_colors = ('green', 'red', 'yellow')
diff[0, :4] = [0, 1, 2, 3]
overlay = label2rgb(label=diff, image=image, bg_label=0,
colors=diff_colors)
# Convert to uint8 to save space
overlay = img_as_ubyte(overlay)
# Save to file
if overlay.ndim == 3:
overlay = overlay[:, :, ::-1]
cv2.imwrite(fname, overlay)
@click.command()
@click.option('--path_data_root', default='../../data')
@click.option('--path_experiment_root', default='../../results/temporary')
@click.option('--model_segm', default='unet_lext')
@click.option('--center_depth', default=1, type=int)
@click.option('--pretrained', is_flag=True)
@click.option('--restore_weights', is_flag=True)
@click.option('--input_channels', default=1, type=int)
@click.option('--output_channels', default=1, type=int)
@click.option('--dataset', type=click.Choice(
['oai_imo', 'okoa', 'maknee']))
@click.option('--subset', type=click.Choice(
['test', 'all']))
@click.option('--mask_mode', default='all_unitibial_unimeniscus', type=str)
@click.option('--sample_mode', default='x_y', type=str)
@click.option('--batch_size', default=64, type=int)
@click.option('--fold_num', default=5, type=int)
@click.option('--fold_idx', default=-1, type=int)
@click.option('--fold_idx_ignore', multiple=True, type=int)
@click.option('--num_workers', default=1, type=int)
@click.option('--seed_trainval_test', default=0, type=int)
@click.option('--predict_folds', is_flag=True)
@click.option('--merge_predictions', is_flag=True)
@click.option('--save_plots', is_flag=True)
def main(**config):
config['path_data_root'] = os.path.abspath(config['path_data_root'])
config['path_experiment_root'] = os.path.abspath(config['path_experiment_root'])
config['path_weights'] = os.path.join(config['path_experiment_root'], 'weights')
if not os.path.exists(config['path_weights']):
raise ValueError('{} does not exist'.format(config['path_weights']))
config['path_predicts'] = os.path.join(
config['path_experiment_root'], f"predicts_{config['dataset']}_test")
config['path_logs'] = os.path.join(
config['path_experiment_root'], f"logs_{config['dataset']}_test")
os.makedirs(config['path_predicts'], exist_ok=True)
os.makedirs(config['path_logs'], exist_ok=True)
logging_fh = logging.FileHandler(
os.path.join(config['path_logs'], 'main.log'))
logging_fh.setLevel(logging.DEBUG)
logger.addHandler(logging_fh)
# Collect the available and specified sources
sources = sources_from_path(path_data_root=config['path_data_root'],
selection=config['dataset'],
with_folds=True,
seed_trainval_test=config['seed_trainval_test'])
# Select the subset for evaluation
if config['subset'] == 'test':
logging.warning('Using the regular trainval-test split')
elif config['subset'] == 'all':
logging.warning('Using data selection: full dataset')
for s in sources:
sources[s]['test_df'] = sources[s]['sel_df']
logger.info(f"Selected number of samples: {len(sources[s]['test_df'])}")
else:
raise ValueError(f"Unknown dataset: {config['subset']}")
if config['dataset'] == 'oai_imo':
from rocaseg.datasets import DatasetOAIiMoSagittal2d as DatasetSagittal2d
elif config['dataset'] == 'okoa':
from rocaseg.datasets import DatasetOKOASagittal2d as DatasetSagittal2d
elif config['dataset'] == 'maknee':
from rocaseg.datasets import DatasetMAKNEESagittal2d as DatasetSagittal2d
else:
raise ValueError(f"Unknown dataset: {config['dataset']}")
# Configure dataset-dependent transforms
fn_crop = CenterCrop(height=300, width=300)
if config['dataset'] == 'oai_imo':
fn_norm = Normalize(mean=0.252699, std=0.251142)
fn_unnorm = UnNormalize(mean=0.252699, std=0.251142)
elif config['dataset'] == 'okoa':
fn_norm = Normalize(mean=0.232454, std=0.236259)
fn_unnorm = UnNormalize(mean=0.232454, std=0.236259)
else:
msg = f"No transforms defined for dataset: {config['dataset']}"
raise NotImplementedError(msg)
dict_fns = {'crop': fn_crop, 'norm': fn_norm, 'unnorm': fn_unnorm}
dataset_test = DatasetSagittal2d(
df_meta=sources[config['dataset']]['test_df'], mask_mode=config['mask_mode'],
name=config['dataset'], sample_mode=config['sample_mode'],
transforms=[
PercentileClippingAndToFloat(cut_min=10, cut_max=99),
fn_crop,
fn_norm,
ToTensor()
])
loader_test = DataLoader(dataset_test,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
# Build a list of folds to run on
if config['fold_idx'] == -1:
fold_idcs = list(range(config['fold_num']))
else:
fold_idcs = [config['fold_idx'], ]
for g in config['fold_idx_ignore']:
fold_idcs = [i for i in fold_idcs if i != g]
# Execute
with torch.no_grad():
if config['predict_folds']:
predict_folds(config=config, loader=loader_test, fold_idcs=fold_idcs)
if config['merge_predictions']:
merge_predictions(config=config, source=sources[config['dataset']],
loader=loader_test, dict_fns=dict_fns,
save_plots=config['save_plots'], remove_foldw=False,
convert_to_nifti=True)
if __name__ == '__main__':
main()