[5943d3]: / rocaseg / datasets / sources.py

Download this file

174 lines (136 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import logging
from sklearn.model_selection import GroupShuffleSplit, GroupKFold
from rocaseg.datasets import (index_from_path_oai_imo,
index_from_path_okoa,
index_from_path_maknee)
logging.basicConfig()
logger = logging.getLogger('datasets')
logger.setLevel(logging.DEBUG)
def sources_from_path(path_data_root,
selection=None,
with_folds=False,
fold_num=5,
seed_trainval_test=0):
"""
Args:
path_data_root: str
selection: iterable or str or None
with_folds: bool
Whether to split trainval subset into the folds.
fold_num: int
Number of folds.
seed_trainval_test: int
Random state for the trainval/test splitting.
Returns:
"""
if selection is None:
selection = ('oai_imo', 'okoa', 'maknee')
elif isinstance(selection, str):
selection = (selection, )
sources = dict()
for name in selection:
if name == 'oai_imo':
logger.info('--- OAI iMorphics dataset ---')
tmp = dict()
tmp['path_root'] = os.path.join(path_data_root,
'91_OAI_iMorphics_full_meta')
if not os.path.exists(tmp['path_root']):
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}")
continue
tmp['full_df'] = index_from_path_oai_imo(tmp['path_root'])
logger.info(f"Total number of samples: "
f"{len(tmp['full_df'])}")
# Select the specific subset
# Remove two series from the dataset as they are completely missing
# information on patellar cartilage:
# /0.C.2/9674570/20040913/10699609/
# /1.C.2/9674570/20050829/10488714/
tmp['sel_df'] = tmp['full_df'][tmp['full_df']['patient'] != '9674570']
logger.info(f"Selected number of samples: "
f"{len(tmp['sel_df'])}")
if with_folds:
# Get trainval/test split
tmp_groups = tmp['sel_df'].loc[:, 'patient'].values
tmp_grades = tmp['sel_df'].loc[:, 'KL'].values
tmp_gss = GroupShuffleSplit(n_splits=1, test_size=0.2,
random_state=seed_trainval_test)
tmp_idcs_trainval, tmp_idcs_test = next(tmp_gss.split(X=tmp['sel_df'],
y=tmp_grades,
groups=tmp_groups))
tmp['trainval_df'] = tmp['sel_df'].iloc[tmp_idcs_trainval]
tmp['test_df'] = tmp['sel_df'].iloc[tmp_idcs_test]
logger.info(f"Made trainval-test split, number of samples: "
f"{len(tmp['trainval_df'])}, "
f"{len(tmp['test_df'])}")
# Make k folds
tmp_gkf = GroupKFold(n_splits=fold_num)
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values
tmp_grades = tmp['trainval_df'].loc[:, 'KL'].values
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'],
y=tmp_grades, groups=tmp_groups)
sources['oai_imo'] = tmp
elif name == 'okoa':
logger.info('--- OKOA dataset ---')
tmp = dict()
tmp['path_root'] = os.path.join(path_data_root,
'32_OKOA_full_meta_rescaled')
if not os.path.exists(tmp['path_root']):
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}")
continue
tmp['full_df'] = index_from_path_okoa(tmp['path_root'])
logger.info(f"Total number of samples: "
f"{len(tmp['full_df'])}")
# Select the specific subset
tmp['sel_df'] = tmp['full_df']
logger.info(f"Selected number of samples: "
f"{len(tmp['sel_df'])}")
if with_folds:
# Get trainval/test split
tmp['trainval_df'] = tmp['sel_df'][tmp['sel_df']['subset'] == 'training']
tmp['test_df'] = tmp['sel_df'][tmp['sel_df']['subset'] == 'evaluation']
logger.info(f"Made trainval-test split, number of samples: "
f"{len(tmp['trainval_df'])}, "
f"{len(tmp['test_df'])}")
# Make k folds
tmp_gkf = GroupKFold(n_splits=fold_num)
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'],
groups=tmp_groups)
sources['okoa'] = tmp
elif name == 'maknee':
logger.info('--- MAKNEE dataset ---')
tmp = dict()
tmp['path_root'] = os.path.join(path_data_root,
'42_MAKNEE_full_meta_rescaled')
if not os.path.exists(tmp['path_root']):
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}")
continue
tmp['full_df'] = index_from_path_maknee(tmp['path_root'])
logger.info(f"Total number of samples: "
f"{len(tmp['full_df'])}")
# Select the specific subset
tmp['sel_df'] = tmp['full_df']
logger.info(f"Selected number of samples: "
f"{len(tmp['sel_df'])}")
# Get trainval/test split
tmp_groups = tmp['sel_df'].loc[:, 'patient'].values
tmp_gss = GroupShuffleSplit(n_splits=1, test_size=0.2,
random_state=seed_trainval_test)
tmp_idcs_trainval, tmp_idcs_test = next(tmp_gss.split(X=tmp['sel_df'],
groups=tmp_groups))
tmp['trainval_df'] = tmp['sel_df'].iloc[tmp_idcs_trainval]
tmp['test_df'] = tmp['sel_df'].iloc[tmp_idcs_test]
logger.info(f"Made trainval-test split, number of samples: "
f"{len(tmp['trainval_df'])}, "
f"{len(tmp['test_df'])}")
if with_folds:
# Make k folds
tmp_gkf = GroupKFold(n_splits=fold_num)
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'],
groups=tmp_groups)
sources['maknee'] = tmp
else:
raise ValueError(f'Unknown dataset `{name}`')
return sources