[5943d3]: / rocaseg / datasets / prepare_dataset_okoa.py

Download this file

205 lines (164 with data), 7.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from collections import defaultdict
import click
from joblib import Parallel, delayed
from glob import glob
from tqdm import tqdm
import numpy as np
import pandas as pd
import pydicom
import cv2
cv2.ocl.setUseOpenCL(False)
def read_dicom(fname, only_data=False):
data = pydicom.read_file(fname)
if len(data.PixelData) == 131072:
dtype = np.uint16
else:
dtype = np.uint8
image = np.frombuffer(data.PixelData, dtype=dtype).astype(float)
if data.PhotometricInterpretation == 'MONOCHROME1':
image = image.max() - image
image = image.reshape((data.Rows, data.Columns))
if only_data:
return image
else:
if hasattr(data, 'ImagerPixelSpacing'):
spacing = [float(e) for e in data.ImagerPixelSpacing]
slice_thickness = float(data.SliceThickness)
elif hasattr(data, 'PixelSpacing'):
spacing = [float(e) for e in data.PixelSpacing]
slice_thickness = float(data.SliceThickness)
else:
msg = f'DICOM {fname} does not have the required attributes'
print(msg)
spacing = (0.0, 0.0)
slice_thickness = 0.0
return image, spacing[0], spacing[1], slice_thickness
@click.command()
@click.argument('path_root_okoa')
@click.argument('path_root_output')
@click.option('--num_threads', default=12, type=click.IntRange(0, 16))
@click.option('--margin', default=0, type=int)
@click.option('--meta_only', is_flag=True)
def main(**config):
config['path_root_okoa'] = os.path.abspath(config['path_root_okoa'])
config['path_root_output'] = os.path.abspath(config['path_root_output'])
# -------------------------------------------------------------------------
def worker_s5g(path_root_output, row, margin):
meta = defaultdict(list)
patient = row['patient'].values[0]
slice_idx = row['slice_idx'].values[0]
side = row['side'].values[0]
release = 'initial'
sequence = 't2_de3d_we_sag_iso'
image, *dicom_meta = read_dicom(row[('fname_full', 'Images')])
# Set the default values for the voxel spacings
pixel_spacing_0 = dicom_meta[0] or '0.5859375'
pixel_spacing_1 = dicom_meta[1] or '0.5859375'
slice_thickness = dicom_meta[2] or '0.60000002384186'
mask_femur = read_dicom(row[('fname_full', 'Femur')], only_data=True)
mask_tibia = read_dicom(row[('fname_full', 'Tibia')], only_data=True)
mask_full = np.zeros(mask_femur.shape, dtype=np.uint8)
# Use inverse order to prioritize femoral tissues in collision handling
mask_full[mask_tibia > 0] = 2
mask_full[mask_femur > 0] = 1
if margin:
image = image[margin:-margin, margin:-margin]
mask_full = mask_full[margin:-margin, margin:-margin]
fname_pattern = '{slice_idx:>03}.{ext}'
# Save image and mask data
dir_rel_image = os.path.join(patient, release, sequence, 'images')
dir_rel_mask = os.path.join(patient, release, sequence, 'masks')
dir_abs_image = os.path.join(path_root_output, dir_rel_image)
dir_abs_mask = os.path.join(path_root_output, dir_rel_mask)
for d in (dir_abs_image, dir_abs_mask):
if not os.path.exists(d):
os.makedirs(d)
fname_image = fname_pattern.format(slice_idx=slice_idx, ext='png')
path_abs_image = os.path.join(dir_abs_image, fname_image)
if not config['meta_only']:
cv2.imwrite(path_abs_image, image)
fname_mask = fname_pattern.format(slice_idx=slice_idx, ext='png')
path_abs_mask = os.path.join(dir_abs_mask, fname_mask)
if not config['meta_only']:
cv2.imwrite(path_abs_mask, mask_full)
path_rel_image = os.path.join(dir_rel_image, fname_image)
path_rel_mask = os.path.join(dir_rel_mask, fname_mask)
meta['subset'].append(row['subset'].values[0])
meta['patient'].append(patient)
meta['release'].append(release)
meta['sequence'].append(sequence)
meta['side'].append(side)
meta['KL'].append(row['KL'].values[0])
meta['slice_idx'].append(slice_idx)
meta['pixel_spacing_0'].append(pixel_spacing_0)
meta['pixel_spacing_1'].append(pixel_spacing_1)
meta['slice_thickness'].append(slice_thickness)
meta['path_rel_image'].append(path_rel_image)
meta['path_rel_mask'].append(path_rel_mask)
return meta
# -------------------------------------------------------------------------
# Get list of images files
paths_fnames_dicom = glob(os.path.join(config['path_root_okoa'], '**', '*.IMA'),
recursive=True)
# root / training|evaluation / P36 / Images|Femur|Tibia / (1-160).IMA
def meta_from_fname(fn):
tmp = fn.split('/')
slice_idx = int(os.path.splitext(tmp[-1])[0]) - 1
slice_idx = '{:>03}'.format(slice_idx)
meta = {
'fname_full': fn,
'slice_idx': slice_idx,
'kind': tmp[-2],
'patient': tmp[-3],
'subset': tmp[-4]
}
return meta
dict_meta = {
'fname_full': [],
'slice_idx': [],
'kind': [],
'patient': [],
'subset': []
}
for e in paths_fnames_dicom:
tmp_meta = meta_from_fname(e)
for k, v in tmp_meta.items():
dict_meta[k].append(v)
df_meta = pd.DataFrame.from_dict(dict_meta)
df_meta = (df_meta
.set_index(['subset', 'patient', 'slice_idx', 'kind'])
.unstack('kind')
.reset_index())
# Add info on scan side and KL grades
path_file_side = os.path.join(config['path_root_okoa'], 'sides.csv')
df_side = pd.read_csv(path_file_side)
path_file_kl = os.path.join(config['path_root_okoa'], 'KL_grades.csv')
df_kl = pd.read_csv(path_file_kl)
df_extra = pd.merge(df_side, df_kl, on='patient', how='left', sort=True)
df_extra.loc[:, 'KL'] = -1
for r_idx, r in df_extra.iterrows():
if r['side'] == 'LEFT':
df_extra.loc[r_idx, 'KL'] = r['KL left']
elif r['side'] == 'RIGHT':
df_extra.loc[r_idx, 'KL'] = r['KL right']
# Keep only the fields of interest
df_extra = df_extra.loc[:, ['patient', 'side', 'KL', 'age']]
# Make same multi-index such than pd.merge doesn't create extra column
df_extra.columns = pd.MultiIndex.from_tuples([(c, '') for c in df_extra.columns])
# Merge the metadata into the single df
df_meta = pd.merge(df_meta, df_extra, on='patient', how='left', sort=True)
# Process the raw data
metas = Parallel(config['num_threads'])(delayed(worker_s5g)(
*[config['path_root_output'], row, config['margin']]
) for _, row in tqdm(df_meta.iterrows(), total=len(df_meta)))
# Merge meta information from different stacks
tmp = defaultdict(list)
for d in metas:
for k, v in d.items():
tmp[k].extend(v)
df_out = pd.DataFrame.from_dict(tmp)
path_output_meta = os.path.join(config['path_root_output'], 'meta_base.csv')
df_out.to_csv(path_output_meta, index=False)
if __name__ == '__main__':
main()