import os
import logging
from collections import defaultdict
import click
import numpy as np
import cv2
import torch
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from rocaseg.datasets import DatasetOAIiMoSagittal2d, sources_from_path
from rocaseg.models import dict_models
from rocaseg.components import (dict_losses, confusion_matrix, dice_score_from_cm,
dict_optimizers, CheckpointHandler)
from rocaseg.preproc import *
from rocaseg.repro import set_ultimate_seed
from rocaseg.components.mixup import mixup_criterion, mixup_data
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
logging.basicConfig()
logger = logging.getLogger('train')
logger.setLevel(logging.DEBUG)
set_ultimate_seed()
if torch.cuda.is_available():
maybe_gpu = 'cuda'
else:
maybe_gpu = 'cpu'
class ModelTrainer:
def __init__(self, config, fold_idx=None):
self.config = config
self.fold_idx = fold_idx
self.paths_weights_fold = dict()
self.paths_weights_fold['segm'] = \
os.path.join(config['path_weights'], 'segm', f'fold_{self.fold_idx}')
os.makedirs(self.paths_weights_fold['segm'], exist_ok=True)
self.path_logs_fold = \
os.path.join(config['path_logs'], f'fold_{self.fold_idx}')
os.makedirs(self.path_logs_fold, exist_ok=True)
self.handlers_ckpt = dict()
self.handlers_ckpt['segm'] = CheckpointHandler(self.paths_weights_fold['segm'])
paths_ckpt_sel = dict()
paths_ckpt_sel['segm'] = self.handlers_ckpt['segm'].get_last_ckpt()
# Initialize and configure the models
self.models = dict()
self.models['segm'] = (dict_models[config['model_segm']]
(input_channels=self.config['input_channels'],
output_channels=self.config['output_channels'],
center_depth=self.config['center_depth'],
pretrained=self.config['pretrained'],
path_pretrained=self.config['path_pretrained_segm'],
restore_weights=self.config['restore_weights'],
path_weights=paths_ckpt_sel['segm']))
self.models['segm'] = nn.DataParallel(self.models['segm'])
self.models['segm'] = self.models['segm'].to(maybe_gpu)
# Configure the training
self.optimizers = dict()
self.optimizers['segm'] = (dict_optimizers['adam'](
self.models['segm'].parameters(),
lr=self.config['lr_segm'],
weight_decay=self.config['wd_segm']))
self.lr_update_rule = {30: 0.1}
self.losses = dict()
self.losses['segm'] = dict_losses[self.config['loss_segm']](
num_classes=self.config['output_channels'],
)
self.losses['segm'] = self.losses['segm'].to(maybe_gpu)
self.tensorboard = SummaryWriter(self.path_logs_fold)
def run_one_epoch(self, epoch_idx, loaders):
name_ds = list(loaders.keys())[0]
fnames_acc = defaultdict(list)
metrics_acc = dict()
metrics_acc['samplew'] = defaultdict(list)
metrics_acc['batchw'] = defaultdict(list)
metrics_acc['datasetw'] = defaultdict(list)
metrics_acc['datasetw'][f'{name_ds}__cm'] = \
np.zeros((self.config['output_channels'],) * 2, dtype=np.uint32)
prog_bar_params = {'postfix': {'epoch': epoch_idx}, }
if self.models['segm'].training:
# ------------------------ Training regime ------------------------
loader_ds = loaders[name_ds]['train']
steps_ds = len(loader_ds)
prog_bar_params.update({'total': steps_ds,
'desc': f'Train, epoch {epoch_idx}'})
loader_ds_iter = iter(loader_ds)
with tqdm(**prog_bar_params) as prog_bar:
for step_idx in range(steps_ds):
self.optimizers['segm'].zero_grad()
data_batch_ds = next(loader_ds_iter)
xs_ds, ys_true_ds = data_batch_ds['xs'], data_batch_ds['ys']
fnames_acc['oai'].extend(data_batch_ds['path_image'])
ys_true_arg_ds = torch.argmax(ys_true_ds.long(), dim=1)
xs_ds = xs_ds.to(maybe_gpu)
ys_true_arg_ds = ys_true_arg_ds.to(maybe_gpu)
if not self.config['with_mixup']:
ys_pred_ds = self.models['segm'](xs_ds)
loss_segm = self.losses['segm'](input_=ys_pred_ds,
target=ys_true_arg_ds)
else:
xs_mixup, ys_mixup_a, ys_mixup_b, lambda_mixup = mixup_data(
x=xs_ds, y=ys_true_arg_ds,
alpha=self.config['mixup_alpha'], device=maybe_gpu)
ys_pred_ds = self.models['segm'](xs_mixup)
loss_segm = mixup_criterion(criterion=self.losses['segm'],
pred=ys_pred_ds,
y_a=ys_mixup_a,
y_b=ys_mixup_b,
lam=lambda_mixup)
metrics_acc['batchw']['loss'].append(loss_segm.item())
loss_segm.backward()
self.optimizers['segm'].step()
prog_bar.update(1)
else:
# ----------------------- Validation regime -----------------------
loader_ds = loaders[name_ds]['val']
steps_ds = len(loader_ds)
prog_bar_params.update({'total': steps_ds,
'desc': f'Validate, epoch {epoch_idx}'})
loader_ds_iter = iter(loader_ds)
with torch.no_grad(), tqdm(**prog_bar_params) as prog_bar:
for step_idx in range(steps_ds):
data_batch_ds = next(loader_ds_iter)
xs_ds, ys_true_ds = data_batch_ds['xs'], data_batch_ds['ys']
fnames_acc['oai'].extend(data_batch_ds['path_image'])
ys_true_arg_ds = torch.argmax(ys_true_ds.long(), dim=1)
xs_ds = xs_ds.to(maybe_gpu)
ys_true_arg_ds = ys_true_arg_ds.to(maybe_gpu)
if not self.config['with_mixup']:
ys_pred_ds = self.models['segm'](xs_ds)
loss_segm = self.losses['segm'](input_=ys_pred_ds,
target=ys_true_arg_ds)
else:
xs_mixup, ys_mixup_a, ys_mixup_b, lambda_mixup = mixup_data(
x=xs_ds, y=ys_true_arg_ds,
alpha=self.config['mixup_alpha'], device=maybe_gpu)
ys_pred_ds = self.models['segm'](xs_mixup)
loss_segm = mixup_criterion(criterion=self.losses['segm'],
pred=ys_pred_ds,
y_a=ys_mixup_a,
y_b=ys_mixup_b,
lam=lambda_mixup)
metrics_acc['batchw']['loss'].append(loss_segm.item())
# Calculate metrics
ys_pred_softmax_ds = nn.Softmax(dim=1)(ys_pred_ds)
ys_pred_softmax_np_ds = ys_pred_softmax_ds.to('cpu').numpy()
ys_pred_arg_np_ds = ys_pred_softmax_np_ds.argmax(axis=1)
ys_true_arg_np_ds = ys_true_arg_ds.to('cpu').numpy()
metrics_acc['datasetw'][f'{name_ds}__cm'] += confusion_matrix(
ys_pred_arg_np_ds, ys_true_arg_np_ds,
self.config['output_channels'])
prog_bar.update(1)
for k, v in metrics_acc['samplew'].items():
metrics_acc['samplew'][k] = np.asarray(v)
metrics_acc['datasetw'][f'{name_ds}__dice_score'] = np.asarray(
dice_score_from_cm(metrics_acc['datasetw'][f'{name_ds}__cm']))
return metrics_acc, fnames_acc
def fit(self, loaders):
epoch_idx_best = -1
loss_best = float('inf')
metrics_train_best = dict()
fnames_train_best = []
metrics_val_best = dict()
fnames_val_best = []
for epoch_idx in range(self.config['epoch_num']):
self.models = {n: m.train() for n, m in self.models.items()}
metrics_train, fnames_train = \
self.run_one_epoch(epoch_idx, loaders)
# Process the accumulated metrics
for k, v in metrics_train['batchw'].items():
if k.startswith('loss'):
metrics_train['datasetw'][k] = np.mean(np.asarray(v))
else:
logger.warning(f'Non-processed batch-wise entry: {k}')
self.models = {n: m.eval() for n, m in self.models.items()}
metrics_val, fnames_val = \
self.run_one_epoch(epoch_idx, loaders)
# Process the accumulated metrics
for k, v in metrics_val['batchw'].items():
if k.startswith('loss'):
metrics_val['datasetw'][k] = np.mean(np.asarray(v))
else:
logger.warning(f'Non-processed batch-wise entry: {k}')
# Learning rate update
for s, m in self.lr_update_rule.items():
if epoch_idx == s:
for name, optim in self.optimizers.items():
for param_group in optim.param_groups:
param_group['lr'] *= m
# Add console logging
logger.info(f'Epoch: {epoch_idx}')
for subset, metrics in (('train', metrics_train),
('val', metrics_val)):
logger.info(f'{subset} metrics:')
for k, v in metrics['datasetw'].items():
logger.info(f'{k}: \n{v}')
# Add TensorBoard logging
for subset, metrics in (('train', metrics_train),
('val', metrics_val)):
# Log only dataset-reduced metrics
for k, v in metrics['datasetw'].items():
if isinstance(v, np.ndarray):
self.tensorboard.add_scalars(
f'fold_{self.fold_idx}/{k}_{subset}',
{f'class{i}': e for i, e in enumerate(v.ravel().tolist())},
global_step=epoch_idx)
elif isinstance(v, (str, int, float)):
self.tensorboard.add_scalar(
f'fold_{self.fold_idx}/{k}_{subset}',
float(v),
global_step=epoch_idx)
else:
logger.warning(f'{k} is of unsupported dtype {v}')
for name, optim in self.optimizers.items():
for param_group in optim.param_groups:
self.tensorboard.add_scalar(
f'fold_{self.fold_idx}/learning_rate/{name}',
param_group['lr'],
global_step=epoch_idx)
# Save the model
loss_curr = metrics_val['datasetw']['loss']
if loss_curr < loss_best:
loss_best = loss_curr
epoch_idx_best = epoch_idx
metrics_train_best = metrics_train
metrics_val_best = metrics_val
fnames_train_best = fnames_train
fnames_val_best = fnames_val
self.handlers_ckpt['segm'].save_new_ckpt(
model=self.models['segm'],
model_name=self.config['model_segm'],
fold_idx=self.fold_idx,
epoch_idx=epoch_idx)
msg = (f'Finished fold {self.fold_idx} '
f'with the best loss {loss_best:.5f} '
f'on epoch {epoch_idx_best}, '
f'weights: ({self.paths_weights_fold})')
logger.info(msg)
return (metrics_train_best, fnames_train_best,
metrics_val_best, fnames_val_best)
@click.command()
@click.option('--path_data_root', default='../../data')
@click.option('--path_experiment_root', default='../../results/temporary')
@click.option('--model_segm', default='unet_lext')
@click.option('--center_depth', default=1, type=int)
@click.option('--pretrained', is_flag=True)
@click.option('--path_pretrained_segm', type=str, help='Path to .pth file')
@click.option('--restore_weights', is_flag=True)
@click.option('--input_channels', default=1, type=int)
@click.option('--output_channels', default=1, type=int)
@click.option('--dataset', type=click.Choice(
['oai_imo', 'okoa', 'maknee']), default='oai_imo')
@click.option('--mask_mode', default='all_unitibial_unimeniscus', type=str)
@click.option('--sample_mode', default='x_y', type=str)
@click.option('--loss_segm', default='multi_ce_loss')
@click.option('--lr_segm', default=0.0001, type=float)
@click.option('--wd_segm', default=5e-5, type=float)
@click.option('--optimizer_segm', default='adam')
@click.option('--batch_size', default=64, type=int)
@click.option('--epoch_size', default=1.0, type=float)
@click.option('--epoch_num', default=2, type=int)
@click.option('--fold_num', default=5, type=int)
@click.option('--fold_idx', default=-1, type=int)
@click.option('--fold_idx_ignore', multiple=True, type=int)
@click.option('--num_workers', default=1, type=int)
@click.option('--seed_trainval_test', default=0, type=int)
@click.option('--with_mixup', is_flag=True)
@click.option('--mixup_alpha', default=1, type=float)
def main(**config):
config['path_data_root'] = os.path.abspath(config['path_data_root'])
config['path_experiment_root'] = os.path.abspath(config['path_experiment_root'])
config['path_weights'] = os.path.join(config['path_experiment_root'], 'weights')
config['path_logs'] = os.path.join(config['path_experiment_root'], 'logs_train')
os.makedirs(config['path_weights'], exist_ok=True)
os.makedirs(config['path_logs'], exist_ok=True)
logging_fh = logging.FileHandler(
os.path.join(config['path_logs'], 'main_{}.log'.format(config['fold_idx'])))
logging_fh.setLevel(logging.DEBUG)
logger.addHandler(logging_fh)
# Collect the available and specified sources
sources = sources_from_path(path_data_root=config['path_data_root'],
selection=config['dataset'],
with_folds=True,
fold_num=config['fold_num'],
seed_trainval_test=config['seed_trainval_test'])
# Build a list of folds to run on
if config['fold_idx'] == -1:
fold_idcs = list(range(config['fold_num']))
else:
fold_idcs = [config['fold_idx'], ]
for g in config['fold_idx_ignore']:
fold_idcs = [i for i in fold_idcs if i != g]
# Train each fold separately
fold_scores = dict()
# Use straightforward fold allocation strategy
folds = list(sources[config['dataset']]['trainval_folds'])
for fold_idx, idcs_subsets in enumerate(folds):
if fold_idx not in fold_idcs:
continue
logger.info(f'Training fold {fold_idx}')
name_ds = config['dataset']
(sources[name_ds]['train_idcs'], sources[name_ds]['val_idcs']) = idcs_subsets
sources[name_ds]['train_df'] = \
sources[name_ds]['trainval_df'].iloc[sources[name_ds]['train_idcs']]
sources[name_ds]['val_df'] = \
sources[name_ds]['trainval_df'].iloc[sources[name_ds]['val_idcs']]
for n, s in sources.items():
logger.info('Made {} train-val split, number of samples: {}, {}'
.format(n, len(s['train_df']), len(s['val_df'])))
datasets = defaultdict(dict)
datasets[name_ds]['train'] = DatasetOAIiMoSagittal2d(
df_meta=sources[name_ds]['train_df'],
mask_mode=config['mask_mode'],
sample_mode=config['sample_mode'],
transforms=[
PercentileClippingAndToFloat(cut_min=10, cut_max=99),
CenterCrop(height=300, width=300),
HorizontalFlip(prob=.5),
GammaCorrection(gamma_range=(0.5, 1.5), prob=.5),
OneOf([
DualCompose([
Scale(ratio_range=(0.7, 0.8), prob=1.),
Scale(ratio_range=(1.5, 1.6), prob=1.),
]),
NoTransform()
]),
Crop(output_size=(300, 300)),
BilateralFilter(d=5, sigma_color=50, sigma_space=50, prob=.3),
Normalize(mean=0.252699, std=0.251142),
ToTensor(),
])
datasets[name_ds]['val'] = DatasetOAIiMoSagittal2d(
df_meta=sources[name_ds]['val_df'],
mask_mode=config['mask_mode'],
sample_mode=config['sample_mode'],
transforms=[
PercentileClippingAndToFloat(cut_min=10, cut_max=99),
CenterCrop(height=300, width=300),
Normalize(mean=0.252699, std=0.251142),
ToTensor()
])
loaders = defaultdict(dict)
loaders[name_ds]['train'] = DataLoader(
datasets[name_ds]['train'],
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers'],
drop_last=True)
loaders[name_ds]['val'] = DataLoader(
datasets[name_ds]['val'],
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=True)
trainer = ModelTrainer(config=config, fold_idx=fold_idx)
# INFO: run once before the training to compute the dataset statistics
# dataset_train.describe()
tmp = trainer.fit(loaders=loaders)
metrics_train, fnames_train, metrics_val, fnames_val = tmp
fold_scores[fold_idx] = (metrics_val['datasetw'][f'{name_ds}__dice_score'], )
trainer.tensorboard.close()
logger.info(f'Fold scores:\n{repr(fold_scores)}')
if __name__ == '__main__':
main()