|
a |
|
b/rocaseg/datasets/sources.py |
|
|
1 |
import os |
|
|
2 |
import logging |
|
|
3 |
|
|
|
4 |
from sklearn.model_selection import GroupShuffleSplit, GroupKFold |
|
|
5 |
|
|
|
6 |
from rocaseg.datasets import (index_from_path_oai_imo, |
|
|
7 |
index_from_path_okoa, |
|
|
8 |
index_from_path_maknee) |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
logging.basicConfig() |
|
|
12 |
logger = logging.getLogger('datasets') |
|
|
13 |
logger.setLevel(logging.DEBUG) |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
def sources_from_path(path_data_root, |
|
|
17 |
selection=None, |
|
|
18 |
with_folds=False, |
|
|
19 |
fold_num=5, |
|
|
20 |
seed_trainval_test=0): |
|
|
21 |
""" |
|
|
22 |
|
|
|
23 |
Args: |
|
|
24 |
path_data_root: str |
|
|
25 |
|
|
|
26 |
selection: iterable or str or None |
|
|
27 |
|
|
|
28 |
with_folds: bool |
|
|
29 |
Whether to split trainval subset into the folds. |
|
|
30 |
fold_num: int |
|
|
31 |
Number of folds. |
|
|
32 |
seed_trainval_test: int |
|
|
33 |
Random state for the trainval/test splitting. |
|
|
34 |
|
|
|
35 |
Returns: |
|
|
36 |
|
|
|
37 |
""" |
|
|
38 |
if selection is None: |
|
|
39 |
selection = ('oai_imo', 'okoa', 'maknee') |
|
|
40 |
elif isinstance(selection, str): |
|
|
41 |
selection = (selection, ) |
|
|
42 |
|
|
|
43 |
sources = dict() |
|
|
44 |
|
|
|
45 |
for name in selection: |
|
|
46 |
if name == 'oai_imo': |
|
|
47 |
logger.info('--- OAI iMorphics dataset ---') |
|
|
48 |
tmp = dict() |
|
|
49 |
tmp['path_root'] = os.path.join(path_data_root, |
|
|
50 |
'91_OAI_iMorphics_full_meta') |
|
|
51 |
|
|
|
52 |
if not os.path.exists(tmp['path_root']): |
|
|
53 |
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}") |
|
|
54 |
continue |
|
|
55 |
|
|
|
56 |
tmp['full_df'] = index_from_path_oai_imo(tmp['path_root']) |
|
|
57 |
logger.info(f"Total number of samples: " |
|
|
58 |
f"{len(tmp['full_df'])}") |
|
|
59 |
|
|
|
60 |
# Select the specific subset |
|
|
61 |
# Remove two series from the dataset as they are completely missing |
|
|
62 |
# information on patellar cartilage: |
|
|
63 |
# /0.C.2/9674570/20040913/10699609/ |
|
|
64 |
# /1.C.2/9674570/20050829/10488714/ |
|
|
65 |
tmp['sel_df'] = tmp['full_df'][tmp['full_df']['patient'] != '9674570'] |
|
|
66 |
logger.info(f"Selected number of samples: " |
|
|
67 |
f"{len(tmp['sel_df'])}") |
|
|
68 |
|
|
|
69 |
if with_folds: |
|
|
70 |
# Get trainval/test split |
|
|
71 |
tmp_groups = tmp['sel_df'].loc[:, 'patient'].values |
|
|
72 |
tmp_grades = tmp['sel_df'].loc[:, 'KL'].values |
|
|
73 |
|
|
|
74 |
tmp_gss = GroupShuffleSplit(n_splits=1, test_size=0.2, |
|
|
75 |
random_state=seed_trainval_test) |
|
|
76 |
tmp_idcs_trainval, tmp_idcs_test = next(tmp_gss.split(X=tmp['sel_df'], |
|
|
77 |
y=tmp_grades, |
|
|
78 |
groups=tmp_groups)) |
|
|
79 |
tmp['trainval_df'] = tmp['sel_df'].iloc[tmp_idcs_trainval] |
|
|
80 |
tmp['test_df'] = tmp['sel_df'].iloc[tmp_idcs_test] |
|
|
81 |
logger.info(f"Made trainval-test split, number of samples: " |
|
|
82 |
f"{len(tmp['trainval_df'])}, " |
|
|
83 |
f"{len(tmp['test_df'])}") |
|
|
84 |
|
|
|
85 |
# Make k folds |
|
|
86 |
tmp_gkf = GroupKFold(n_splits=fold_num) |
|
|
87 |
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values |
|
|
88 |
tmp_grades = tmp['trainval_df'].loc[:, 'KL'].values |
|
|
89 |
|
|
|
90 |
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'], |
|
|
91 |
y=tmp_grades, groups=tmp_groups) |
|
|
92 |
sources['oai_imo'] = tmp |
|
|
93 |
|
|
|
94 |
elif name == 'okoa': |
|
|
95 |
logger.info('--- OKOA dataset ---') |
|
|
96 |
tmp = dict() |
|
|
97 |
tmp['path_root'] = os.path.join(path_data_root, |
|
|
98 |
'32_OKOA_full_meta_rescaled') |
|
|
99 |
|
|
|
100 |
if not os.path.exists(tmp['path_root']): |
|
|
101 |
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}") |
|
|
102 |
continue |
|
|
103 |
|
|
|
104 |
tmp['full_df'] = index_from_path_okoa(tmp['path_root']) |
|
|
105 |
logger.info(f"Total number of samples: " |
|
|
106 |
f"{len(tmp['full_df'])}") |
|
|
107 |
|
|
|
108 |
# Select the specific subset |
|
|
109 |
tmp['sel_df'] = tmp['full_df'] |
|
|
110 |
logger.info(f"Selected number of samples: " |
|
|
111 |
f"{len(tmp['sel_df'])}") |
|
|
112 |
|
|
|
113 |
if with_folds: |
|
|
114 |
# Get trainval/test split |
|
|
115 |
tmp['trainval_df'] = tmp['sel_df'][tmp['sel_df']['subset'] == 'training'] |
|
|
116 |
tmp['test_df'] = tmp['sel_df'][tmp['sel_df']['subset'] == 'evaluation'] |
|
|
117 |
logger.info(f"Made trainval-test split, number of samples: " |
|
|
118 |
f"{len(tmp['trainval_df'])}, " |
|
|
119 |
f"{len(tmp['test_df'])}") |
|
|
120 |
|
|
|
121 |
# Make k folds |
|
|
122 |
tmp_gkf = GroupKFold(n_splits=fold_num) |
|
|
123 |
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values |
|
|
124 |
|
|
|
125 |
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'], |
|
|
126 |
groups=tmp_groups) |
|
|
127 |
sources['okoa'] = tmp |
|
|
128 |
|
|
|
129 |
elif name == 'maknee': |
|
|
130 |
logger.info('--- MAKNEE dataset ---') |
|
|
131 |
tmp = dict() |
|
|
132 |
tmp['path_root'] = os.path.join(path_data_root, |
|
|
133 |
'42_MAKNEE_full_meta_rescaled') |
|
|
134 |
|
|
|
135 |
if not os.path.exists(tmp['path_root']): |
|
|
136 |
logger.warning(f"Dataset {name} is not found in {tmp['path_root']}") |
|
|
137 |
continue |
|
|
138 |
|
|
|
139 |
tmp['full_df'] = index_from_path_maknee(tmp['path_root']) |
|
|
140 |
logger.info(f"Total number of samples: " |
|
|
141 |
f"{len(tmp['full_df'])}") |
|
|
142 |
|
|
|
143 |
# Select the specific subset |
|
|
144 |
tmp['sel_df'] = tmp['full_df'] |
|
|
145 |
logger.info(f"Selected number of samples: " |
|
|
146 |
f"{len(tmp['sel_df'])}") |
|
|
147 |
|
|
|
148 |
# Get trainval/test split |
|
|
149 |
tmp_groups = tmp['sel_df'].loc[:, 'patient'].values |
|
|
150 |
|
|
|
151 |
tmp_gss = GroupShuffleSplit(n_splits=1, test_size=0.2, |
|
|
152 |
random_state=seed_trainval_test) |
|
|
153 |
tmp_idcs_trainval, tmp_idcs_test = next(tmp_gss.split(X=tmp['sel_df'], |
|
|
154 |
groups=tmp_groups)) |
|
|
155 |
tmp['trainval_df'] = tmp['sel_df'].iloc[tmp_idcs_trainval] |
|
|
156 |
tmp['test_df'] = tmp['sel_df'].iloc[tmp_idcs_test] |
|
|
157 |
logger.info(f"Made trainval-test split, number of samples: " |
|
|
158 |
f"{len(tmp['trainval_df'])}, " |
|
|
159 |
f"{len(tmp['test_df'])}") |
|
|
160 |
|
|
|
161 |
if with_folds: |
|
|
162 |
# Make k folds |
|
|
163 |
tmp_gkf = GroupKFold(n_splits=fold_num) |
|
|
164 |
tmp_groups = tmp['trainval_df'].loc[:, 'patient'].values |
|
|
165 |
|
|
|
166 |
tmp['trainval_folds'] = tmp_gkf.split(X=tmp['trainval_df'], |
|
|
167 |
groups=tmp_groups) |
|
|
168 |
sources['maknee'] = tmp |
|
|
169 |
|
|
|
170 |
else: |
|
|
171 |
raise ValueError(f'Unknown dataset `{name}`') |
|
|
172 |
|
|
|
173 |
return sources |