import os
from glob import glob
from collections import defaultdict
import click
from joblib import Parallel, delayed
from tqdm import tqdm
import numpy as np
from sas7bdat import SAS7BDAT
from scipy import io
import pandas as pd
import pydicom
import cv2
from rocaseg.datasets.constants import locations_mh53
from rocaseg.datasets.meta_oai import side_code_to_str, release_to_prefix_var
cv2.ocl.setUseOpenCL(False)
def read_dicom(fname):
data = pydicom.read_file(fname)
image = np.frombuffer(data.PixelData, dtype=np.uint16).astype(float)
if data.PhotometricInterpretation == 'MONOCHROME1':
image = image.max() - image
image = image.reshape((data.Rows, data.Columns))
if 'RIGHT' in data.SeriesDescription:
side = 'RIGHT'
elif 'LEFT' in data.SeriesDescription:
side = 'LEFT'
else:
print(data)
msg = f'DICOM {fname} does not contain side info'
raise ValueError(msg)
if hasattr(data, 'ImagerPixelSpacing'):
spacing = [float(e) for e in data.ImagerPixelSpacing[:2]]
elif hasattr(data, 'PixelSpacing'):
spacing = [float(e) for e in data.PixelSpacing[:2]]
else:
msg = f'DICOM {fname} does not contain spacing info'
raise AttributeError(msg)
return (image,
spacing[0],
spacing[1],
float(data.SliceThickness),
side)
def mask_from_mat(masks_mat, mask_shape, slice_idx, attr_name):
mask = np.zeros(mask_shape, dtype=np.uint8)
data = getattr(masks_mat[0][slice_idx], attr_name)
if len(data.shape) > 0:
for comp in range(data.shape[1]):
cnt = data[0, comp][:, :2].copy()
cnt[:, 1] = mask_shape[0] - cnt[:, 1]
cntf = cnt.astype(np.int)
cv2.drawContours(mask, [cntf], -1, (255, 255, 255), -1)
mask = (mask > 0).astype(np.uint8)
return mask
@click.command()
@click.argument('path_root_oai_mri')
@click.argument('path_root_imo')
@click.argument('path_root_output')
@click.option('--num_threads', default=12, type=click.IntRange(0, 16))
@click.option('--margin', default=0, type=int)
@click.option('--meta_only', is_flag=True)
def main(**config):
config['path_root_oai_mri'] = os.path.abspath(config['path_root_oai_mri'])
config['path_root_imo'] = os.path.abspath(config['path_root_imo'])
config['path_root_output'] = os.path.abspath(config['path_root_output'])
# -------------------------------------------------------------------------
def worker_xz9(path_root_output, path_stack, margin):
meta = defaultdict(list)
release, patient = path_stack.split('/')[-4:-2]
prefix_var = release_to_prefix_var[release]
sequence = 'sag_3d_dess_we'
path_annot = os.path.join(config['path_root_imo'], patient, prefix_var)
fnames_annot = glob(os.path.join(path_annot, '*.mat'))
if len(fnames_annot) != 1:
raise ValueError(f'Unexpected annotations for patient: {patient}')
fname_annot = fnames_annot[0]
file_mat = io.loadmat(os.path.join(path_annot, fname_annot),
struct_as_record=False)
masks_mat = file_mat['datastruct']
num_slices = masks_mat.shape[1]
for slice_idx in range(num_slices):
# Indexing of slices in OAI dataset starts with 001
fname_src = os.path.join(path_stack, '{:>03}'.format(slice_idx+1))
image, *dicom_meta = read_dicom(fname_src)
side = dicom_meta[3]
mask_proc = np.zeros_like(image)
# NOTICE: Reference masks have some collisions. We solve them
# by prioritising the tissues which are earlier in the list.
for part_name, part_value in reversed(locations_mh53.items()):
# Skip the background as it is not presented in the source data
if part_name == 'Background':
continue
try:
mask_temp = mask_from_mat(masks_mat, image.shape,
slice_idx, part_name)
mask_proc[mask_temp > 0] = part_value
except AttributeError:
print(f'Error accessing {part_name} in {fname_src}')
if margin != 0:
image = image[margin:-margin, margin:-margin]
mask_proc = mask_proc[margin:-margin, margin:-margin]
fname_pattern = '{slice_idx:>03}.{ext}'
# Save image and mask data
dir_rel_image = os.path.join(patient, release, sequence, 'images')
dir_rel_mask = os.path.join(patient, release, sequence, 'masks')
dir_abs_image = os.path.join(path_root_output, dir_rel_image)
dir_abs_mask = os.path.join(path_root_output, dir_rel_mask)
for d in (dir_abs_image, dir_abs_mask):
if not os.path.exists(d):
os.makedirs(d)
fname_image = fname_pattern.format(slice_idx=slice_idx, ext='png')
path_abs_image = os.path.join(dir_abs_image, fname_image)
if not config['meta_only']:
cv2.imwrite(path_abs_image, image)
fname_mask = fname_pattern.format(slice_idx=slice_idx, ext='png')
path_abs_mask = os.path.join(dir_abs_mask, fname_mask)
if not config['meta_only']:
cv2.imwrite(path_abs_mask, mask_proc)
path_rel_image = os.path.join(dir_rel_image, fname_image)
path_rel_mask = os.path.join(dir_rel_mask, fname_mask)
meta['patient'].append(patient)
meta['release'].append(release)
meta['prefix_var'].append(prefix_var)
meta['sequence'].append(sequence)
meta['side'].append(side)
meta['slice_idx'].append(slice_idx)
meta['pixel_spacing_0'].append(dicom_meta[0])
meta['pixel_spacing_1'].append(dicom_meta[1])
meta['slice_thickness'].append(dicom_meta[2])
meta['path_rel_image'].append(path_rel_image)
meta['path_rel_mask'].append(path_rel_mask)
return meta
# -------------------------------------------------------------------------
# OAI data path structure:
# root / examination / release / patient / date / barcode (/ slices)
paths_stacks = glob(os.path.join(config['path_root_oai_mri'], '**/**/**/**/**'))
paths_stacks.sort(key=lambda x: int(x.split('/')[-3]))
metas = Parallel(config['num_threads'])(delayed(worker_xz9)(
*[config['path_root_output'], path_stack, config['margin']]
) for path_stack in tqdm(paths_stacks))
# Merge meta information from different stacks
tmp = defaultdict(list)
for d in metas:
for k, v in d.items():
tmp[k].extend(v)
df_out = pd.DataFrame.from_dict(tmp)
# Find the grading data
fnames_sas = glob(os.path.join(config['path_root_oai_mri'],
'*', '*.sas7bdat'), recursive=True)
# Read semi-quantitative data
dfs = dict()
for fn in fnames_sas:
with SAS7BDAT(fn) as f:
raw = [r for r in f]
tmp = pd.DataFrame(raw[1:], columns=raw[0])
prefix_var = [c for c in tmp.columns if c.endswith('XRKL')][0][:3]
tmp = tmp.rename(lambda x: x.upper(), axis=1)
tmp = tmp.rename({'VERSION': f'{prefix_var}VERSION',
'ID': 'patient',
'SIDE': 'side'}, axis=1)
tmp['side'] = tmp['side'].apply(lambda s: side_code_to_str[s])
dfs.update({prefix_var: tmp})
# Set the index to join on
for k, tmp in dfs.items():
dfs[k] = tmp.set_index(['patient', 'side', 'READPRJ'])
df = pd.concat(dfs.values(), axis=1)
df = df.reset_index()
# Remove unnecessary columns and reformat the grading info
df_sel = df[['patient', 'side', 'V00XRKL', 'V01XRKL']]
df_sel = (df_sel
.set_index(['patient', 'side'])
.rename({'V00XRKL': 'V00', 'V01XRKL': 'V01'}, axis=1)
.stack()
.reset_index()
.rename({'level_2': 'prefix_var', 0: 'KL'}, axis=1))
# Select the subset for which the annotations are available
indexers = ['patient', 'side', 'prefix_var']
sel = df_out.set_index(indexers).index.unique()
df_sel = (df_sel
.drop_duplicates(subset=indexers) # There are ~5 duplicates
.set_index(indexers)
.loc[sel, :]
.reset_index())
df_out = pd.merge(df_out, df_sel, on=indexers, how='left')
path_output_meta = os.path.join(config['path_root_output'], 'meta_base.csv')
df_out.to_csv(path_output_meta, index=False)
if __name__ == '__main__':
main()