[5943d3]: / rocaseg / datasets / dataset_maknee.py

Download this file

129 lines (103 with data), 4.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import glob
import logging
from collections import defaultdict
import numpy as np
import pandas as pd
import cv2
from torch.utils.data.dataset import Dataset
logging.basicConfig()
logger = logging.getLogger('dataset')
logger.setLevel(logging.DEBUG)
def index_from_path_maknee(path_root, force=False):
fname_meta_dyn = os.path.join(path_root, 'meta_dynamic.csv')
fname_meta_base = os.path.join(path_root, 'meta_base.csv')
if not os.path.exists(fname_meta_dyn) or force:
fnames_image = glob.glob(
os.path.join(path_root, '**', 'images', '*.png'), recursive=True)
logger.info('{} images found'.format(len(fnames_image)))
fnames_mask = glob.glob(
os.path.join(path_root, '**', 'masks', '*.png'), recursive=True)
logger.info('{} masks found'.format(len(fnames_mask)))
df_meta = pd.read_csv(fname_meta_base,
dtype={'patient': str,
'release': str,
'sequence': str,
'side': str,
'slice_idx': int,
'pixel_spacing_0': float,
'pixel_spacing_1': float,
'slice_thickness': float,
'KL': int},
index_col=False)
if len(fnames_image) != len(df_meta):
raise ValueError("Number of images doesn't match with the metadata")
df_meta['path_image'] = [os.path.join(path_root, e)
for e in df_meta['path_rel_image']]
# Sort the records
df_meta_sorted = (df_meta
.sort_values(['patient', 'sequence', 'slice_idx'])
.reset_index()
.drop('index', axis=1))
df_meta_sorted.to_csv(fname_meta_dyn, index=False)
else:
df_meta_sorted = pd.read_csv(fname_meta_dyn,
dtype={'patient': str,
'release': str,
'sequence': str,
'side': str,
'slice_idx': int,
'pixel_spacing_0': float,
'pixel_spacing_1': float,
'slice_thickness': float,
'KL': int},
index_col=False)
return df_meta_sorted
def read_image(path_file):
image = cv2.imread(path_file, cv2.IMREAD_GRAYSCALE)
return image.reshape((1, *image.shape))
class DatasetMAKNEESagittal2d(Dataset):
def __init__(self, df_meta, mask_mode=None, name=None, transforms=None,
sample_mode='x_y', **kwargs):
logger.warning('Redundant dataset init arguments:\n{}'
.format(repr(kwargs)))
self.df_meta = df_meta
self.mask_mode = mask_mode
self.name = name
self.transforms = transforms
self.sample_mode = sample_mode
def __len__(self):
return len(self.df_meta)
def _getitem_x_y(self, idx):
image = read_image(self.df_meta['path_image'].iloc[idx])
mask = np.zeros_like(image)
# Apply transformations
if self.transforms is not None:
for t in self.transforms:
if hasattr(t, 'randomize'):
t.randomize()
image, mask = t(image, mask)
tmp = dict(self.df_meta.iloc[idx])
tmp['image'] = image
tmp['mask'] = mask
tmp['xs'] = tmp['image']
tmp['ys'] = tmp['mask']
return tmp
def __getitem__(self, idx):
if self.sample_mode == 'x_y':
return self._getitem_x_y(idx)
else:
raise ValueError('Invalid `sample_mode`')
def describe(self):
summary = defaultdict(float)
for i in range(len(self)):
if self.sample_mode == 'x_y':
_, mask = self.__getitem__(i)
else:
mask = self.__getitem__(i)['mask']
summary['num_class_pixels'] += mask.numpy().sum(axis=(1, 2))
summary['class_importance'] = \
np.sum(summary['num_class_pixels']) / summary['num_class_pixels']
summary['class_importance'] /= np.sum(summary['class_importance'])
logger.info('Dataset statistics:')
logger.info(sorted(summary.items()))