[8e7194]: / runRoCoSDF.py

Download this file

556 lines (399 with data), 23.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# -*- coding: utf-8 -*-
"""Main trainer for RoCoSDF.
"""
import time
import torch
import torch.nn.functional as F
from tqdm import tqdm
from models.datasetRoCo import DatasetRoCo
from models.sdfSampler import SDFSampler
from models.model import RoCoSDFNetwork
import argparse
from pyhocon import ConfigFactory
import os
from shutil import copyfile
import numpy as np
import trimesh
from models.utils import get_root_logger, print_log
import math
import mcubes
import warnings
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import scipy.io as sio
import skimage.measure
import plyfile
from models.discriminator import Discriminator
warnings.filterwarnings("ignore")
class Runner:
def __init__(self, args, conf_path, mode='train'):
self.device = torch.device('cuda')
# Configuration
self.conf_path = conf_path
f = open(self.conf_path)
conf_text = f.read()
f.close()
self.conf = ConfigFactory.parse_string(conf_text)
self.conf['dataset.data_name'] = self.conf['dataset.data_name']
self.base_exp_dir = self.conf['general.base_exp_dir'] + args.dir
os.makedirs(self.base_exp_dir, exist_ok=True)
self.base_exp_dir2 = self.conf['general.base_exp_dir'] + args.dir2
os.makedirs(self.base_exp_dir2, exist_ok=True)
if args.dir3 is not None:
self.base_exp_dir3 = self.conf['general.base_exp_dir'] + args.dir3
os.makedirs(self.base_exp_dir3, exist_ok=True)
# Dataset
self.dataset_roco = DatasetRoCo(self.conf['dataset'], args.dataname,args.gpu) # Current
self.dataset_roco_2 = DatasetRoCo(self.conf['dataset2'], args.dataname2,args.gpu) # Another one
self.dataname = args.dataname
self.dataname2 = args.dataname2
# for UNSR-ADL
self.betas = (0.9, 0.999)
# Training parameters
self.maxiter = self.conf.get_int('train.maxiter')
self.save_freq = self.conf.get_int('train.save_freq')
self.report_freq = self.conf.get_int('train.report_freq')
self.val_freq = self.conf.get_int('train.val_freq')
self.batch_size = self.conf.get_int('train.batch_size')
self.learning_rate = self.conf.get_float('train.learning_rate')
self.warm_up_end = self.conf.get_float('train.warm_up_end', default=0.0)
self.eval_num_points = self.conf.get_int('train.eval_num_points')
self.labmda_scc = self.conf.get_float('train.labmda_scc')
self.labmda_adl = self.conf.get_float('train.labmda_adl')
self.labmda_non_mfd = self.conf.get_float('train.labmda_non_mfd')
self.labmda_mfd = self.conf.get_float('train.labmda_mfd')
self.iter_step = 0
self.iter_step2 = 0
self.iter_step3 = 0
self.mode = mode
# Networks
self.sdf_network = RoCoSDFNetwork(**self.conf['model.sdf_network']).to(self.device)
self.optimizer = torch.optim.Adam(self.sdf_network.parameters(), lr=self.learning_rate)
self.discriminator = Discriminator(**self.conf['model.discriminator']).to(self.device)
self.dis_optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=self.learning_rate,betas=self.betas)
self.sdf_network2 = RoCoSDFNetwork(**self.conf['model.sdf_network']).to(self.device)
self.optimizer2 = torch.optim.Adam(self.sdf_network2.parameters(), lr=self.learning_rate)
self.discriminator2 = Discriminator(**self.conf['model.discriminator']).to(self.device)
self.dis_optimizer2 = torch.optim.Adam(self.discriminator2.parameters(), lr=self.learning_rate,betas=self.betas)
self.sdf_network3 = RoCoSDFNetwork(**self.conf['model.sdf_network']).to(self.device)
self.optimizer3 = torch.optim.Adam(self.sdf_network3.parameters(), lr=self.learning_rate)
def train3(self):
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file3 = os.path.join(os.path.join(self.base_exp_dir3), f'{timestamp}.log')
logger3 = get_root_logger(log_file=log_file3, name='outs')
print(log_file3)
batch_size = self.batch_size
loss_l1 = torch.nn.L1Loss(reduction="sum")
res_step = self.maxiter - self.iter_step3
for iter_i in tqdm(range(res_step)):
self.update_learning_rate_np(iter_i,3)
samples, samples_sdf = self.dataset_roco3.train_data(batch_size)
samples.requires_grad = True
pred_sdf = self.sdf_network3.sdf(samples) # 5000x1
########################## loss define ##############################
loss_sdf = loss_l1(pred_sdf,samples_sdf)/samples.shape[0]
loss_mfd = pred_sdf.abs().mean()
loss = loss_sdf + loss_mfd*self.labmda_mfd
self.optimizer3.zero_grad()
loss.backward()
self.optimizer3.step()
self.iter_step3 += 1
if self.iter_step3 % self.report_freq == 0:
print_log('iter:{:8>d} loss = {} lr={}'.format(self.iter_step3, loss, self.optimizer3.param_groups[0]['lr']), logger=logger3)
if self.iter_step3 % self.val_freq == 0 and self.iter_step3!=0:
self.reconstruct_mesh(resolution=256, threshold=args.mcubes_threshold, point_gt=None, iter_step=self.iter_step3, logger=logger3,netNumber=3)
if self.iter_step3 % self.save_freq == 0 and self.iter_step3!=0:
self.save_checkpoint(netNumber=3)
def train2(self):
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file2 = os.path.join(os.path.join(self.base_exp_dir2), f'{timestamp}.log')
print(log_file2)
logger2 = get_root_logger(log_file=log_file2, name='outs2')
batch_size = self.batch_size
res_step = self.maxiter - self.iter_step2
for iter_i in tqdm(range(res_step)):
self.update_learning_rate_np(iter_i,2)
self.optimizer2.zero_grad()
points, samples, point_gt = self.dataset_roco_2.train_data(batch_size)
samples.requires_grad = True
gradients_sample = self.sdf_network2.gradient(samples).squeeze() # 5000x3
sdf_sample = self.sdf_network2.sdf(samples) # 5000x1
grad_norm = F.normalize(gradients_sample, dim=1) # 5000x3
sample_moved = samples - grad_norm * sdf_sample # 5000x3
################## Loss Define ####################
loss_sdf = torch.linalg.norm((points - sample_moved), ord=2, dim=-1).mean()
consis_constraint = (1.0 - F.cosine_similarity(grad_norm, sample_moved-points, dim=1))
R_non_mfd = torch.exp(-self.labmda_non_mfd * torch.abs(sdf_sample)).reshape(-1,consis_constraint.shape[-1])
loss_SCC = consis_constraint * R_non_mfd
G_loss = loss_sdf + loss_SCC.mean()*self.labmda_scc
############# Train ADL Discriminator #################
self.dis_optimizer2.zero_grad()
d_fake_output = self.discriminator2.sdf(sdf_sample.detach())
d_fake_loss=self.get_discriminator_loss_single(d_fake_output,label=False)
real_sdf = torch.zeros(points.size(0), 1).to(self.device)
d_real_output = self.discriminator2.sdf(real_sdf)
d_real_loss=self.get_discriminator_loss_single(d_real_output,label=True)
dis_loss = d_real_loss + d_fake_loss
dis_loss.backward()
self.dis_optimizer2.step()
################ Total Loss ################
d_fake_output = self.discriminator2.sdf(sdf_sample)
gan_loss=self.get_generator_loss(d_fake_output)
total_loss = gan_loss* self.labmda_adl + G_loss
total_loss.backward()
self.optimizer2.step()
self.iter_step2 += 1
if self.iter_step2 % self.report_freq == 0:
print_log('iter:{:8>d} loss = {} lr={}'.format(self.iter_step2, loss_sdf, self.optimizer2.param_groups[0]['lr']), logger=logger2)
if self.iter_step2 % self.val_freq == 0 and self.iter_step2!=0:
self.reconstruct_mesh(resolution=256, threshold=args.mcubes_threshold, point_gt=point_gt, iter_step=self.iter_step, logger=logger2,netNumber=2)
if self.iter_step2 % self.save_freq == 0 and self.iter_step2!=0:
self.save_checkpoint(netNumber=2)
def train1(self):
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file1 = os.path.join(os.path.join(self.base_exp_dir), f'{timestamp}.log')
logger1 = get_root_logger(log_file=log_file1, name='outs1')
batch_size = self.batch_size
res_step = self.maxiter - self.iter_step
for iter_i in tqdm(range(res_step)):
self.update_learning_rate_np(iter_i,1)
points, samples, point_gt = self.dataset_roco.train_data(batch_size)
self.optimizer.zero_grad()
samples.requires_grad = True
gradients_sample = self.sdf_network.gradient(samples).squeeze() # 5000x3
sdf_sample = self.sdf_network.sdf(samples) # 5000x1
grad_norm = F.normalize(gradients_sample, dim=1) # 5000x3
sample_moved = samples - grad_norm * sdf_sample # 5000x3
################## Loss Define ####################
loss_sdf = torch.linalg.norm((points - sample_moved), ord=2, dim=-1).mean()
consis_constraint = (1.0 - F.cosine_similarity(grad_norm, sample_moved-points, dim=1))
R_non_mfd = torch.exp(-self.labmda_non_mfd * torch.abs(sdf_sample)).reshape(-1,consis_constraint.shape[-1])
loss_SCC = consis_constraint * R_non_mfd
G_loss = loss_sdf + loss_SCC.mean()*self.labmda_scc
############# Train ADL Discriminator #################
self.dis_optimizer.zero_grad()
d_fake_output = self.discriminator.sdf(sdf_sample.detach())
d_fake_loss=self.get_discriminator_loss_single(d_fake_output,label=False)
real_sdf = torch.zeros(points.size(0), 1).to(self.device)
d_real_output = self.discriminator.sdf(real_sdf)
d_real_loss=self.get_discriminator_loss_single(d_real_output,label=True)
dis_loss = d_real_loss + d_fake_loss
dis_loss.backward()
self.dis_optimizer.step()
################ Total Loss ################
d_fake_output = self.discriminator.sdf(sdf_sample)
gan_loss=self.get_generator_loss(d_fake_output)
total_loss = gan_loss* self.labmda_adl + G_loss
total_loss.backward()
self.optimizer.step()
self.iter_step += 1
if self.iter_step % self.report_freq == 0:
print_log('iter:{:8>d} loss = {} lr={}'.format(self.iter_step, G_loss, self.optimizer.param_groups[0]['lr']), logger=logger1)
if self.iter_step % self.val_freq == 0 and self.iter_step!=0:
self.reconstruct_mesh(resolution=256, threshold=args.mcubes_threshold, point_gt=point_gt, iter_step=self.iter_step, logger=logger1, netNumber=1)
if self.iter_step % self.save_freq == 0 and self.iter_step!=0:
self.save_checkpoint(netNumber=1)
############# ADL Loss ##############################
def get_generator_loss(self,pred_fake):
fake_loss=torch.mean((pred_fake-1)**2)
return fake_loss
def get_discriminator_loss_single(self,pred,label=True):
if label==True:
loss=torch.mean((pred-1)**2)
return loss
else:
loss=torch.mean((pred)**2)
return loss
# create cube from (-1,-1,-1) to (1,1,1) and uniformly sample points for marching cube
def create_cube(self,N):
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor())
samples = torch.zeros(N ** 3, 4)
voxel_origin = [-1, -1, -1]
voxel_size = 2.0 / (N - 1)
# transform first 3 columns
# to be the x, y, z index
samples[:, 2] = overall_index % N
samples[:, 1] = (overall_index.long().float() / N) % N
samples[:, 0] = ((overall_index.long().float() / N) / N) % N
# transform first 3 columns
# to be the x, y, z coordinate
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
samples.requires_grad = False
return samples
def reconstruct_mesh(self, resolution=64, threshold=0.0, point_gt=None, iter_step=0, logger=None,netNumber = None):
if netNumber == 1:
os.makedirs(os.path.join(self.base_exp_dir, 'outputs'), exist_ok=True)
mesh = self.extract_geometry(resolution=resolution, threshold=threshold, query_func=lambda pts: -self.sdf_network.sdf(pts))
mesh.export(os.path.join(self.base_exp_dir, 'outputs', '{:0>8d}_{}.ply'.format(self.iter_step,str(threshold))))
elif netNumber == 2:
os.makedirs(os.path.join(self.base_exp_dir2, 'outputs'), exist_ok=True)
mesh = self.extract_geometry(resolution=resolution, threshold=threshold, query_func=lambda pts: -self.sdf_network2.sdf(pts))
mesh.export(os.path.join(self.base_exp_dir2, 'outputs', '{:0>8d}_{}.ply'.format(self.iter_step2,str(threshold))))
else:
os.makedirs(os.path.join(self.base_exp_dir3, 'outputs'), exist_ok=True)
mesh = self.extract_geometry(resolution=resolution, threshold=threshold, query_func=lambda pts: -self.sdf_network3.sdf(pts))
mesh.export(os.path.join(self.base_exp_dir3, 'outputs', '{:0>8d}_{}.ply'.format(self.iter_step3,str(threshold))))
def query_function(self,netNumber=None):
if netNumber == 1:
query_func=lambda pts: self.sdf_network.sdf(pts)
else:
query_func=lambda pts: self.sdf_network2.sdf(pts)
return query_func
def update_learning_rate_np(self, iter_step,netNumber = 1):
warn_up = self.warm_up_end
max_iter = self.maxiter
init_lr = self.learning_rate
lr = (iter_step / warn_up) if iter_step < warn_up else 0.5 * (math.cos((iter_step - warn_up)/(max_iter - warn_up) * math.pi) + 1)
lr = lr * init_lr
if netNumber == 1:
for g in self.optimizer.param_groups:
g['lr'] = lr
elif netNumber == 2:
for g in self.optimizer2.param_groups:
g['lr'] = lr
else:
for g in self.optimizer3.param_groups:
g['lr'] = lr
def extract_fields_grad(self, bound_min, bound_max, resolution, query_func,grad_func):
N = 32
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
g = np.zeros([resolution, resolution, resolution, 3], dtype=np.float32)
# with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).cuda()
val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy()
grad = grad_func(pts).reshape(len(xs), len(ys), len(zs), 3).detach().cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
g[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = grad
return u,g
def extract_fields(self, resolution, query_func):
N = resolution
max_batch = 1000000
# the voxel_origin is the (bottom, left, down) corner, not the middle
cube = self.create_cube(resolution).cuda()
cube_points = cube.shape[0]
with torch.no_grad():
head = 0
while head < cube_points:
query = cube[head : min(head + max_batch, cube_points), 0:3]
# inference defined in forward function per pytorch lightning convention
pred_sdf = query_func(query)
cube[head : min(head + max_batch, cube_points), 3] = pred_sdf.squeeze()
head += max_batch
sdf_values = cube[:, 3]
sdf_values = sdf_values.reshape(N, N, N).detach().cpu()
return sdf_values
def extract_geometry(self, resolution, threshold, query_func):
print('Creating mesh with threshold: {}'.format(threshold))
u = self.extract_fields( resolution, query_func).numpy()
vertices, triangles = mcubes.marching_cubes(u, threshold)
voxel_origin = [-1, -1, -1]
voxel_size = 2.0 / (resolution - 1)
vertices[:,0] = vertices[:,0]*voxel_size + voxel_origin[0]
vertices[:,1] = vertices[:,1]*voxel_size + voxel_origin[0]
vertices[:,2] = vertices[:,2]*voxel_size + voxel_origin[0]
mesh = trimesh.Trimesh(vertices, triangles)
return mesh
def reconstruct_mesh_CSG(self, resolution=64, threshold=0.0, intersactionSDF = None):
bound_min = torch.tensor(self.dataset_roco.object_bbox_min, dtype=torch.float32)
bound_max = torch.tensor(self.dataset_roco.object_bbox_max, dtype=torch.float32)
os.makedirs(os.path.join(self.base_exp_dir, 'outputs'), exist_ok=True)
mesh = self.extract_geometry_CSG(bound_min, bound_max, resolution=resolution, threshold=threshold, u = intersactionSDF)
mesh.export(os.path.join(self.base_exp_dir, 'outputs', '{:0>8d}_{}_intersactSDF.ply'.format(self.iter_step,str(threshold))))
def extract_geometry_CSG(self, bound_min, bound_max, resolution, threshold, u):
print('Creating mesh with threshold: {}'.format(threshold))
vertices, triangles = mcubes.marching_cubes(u, threshold)
voxel_origin = [-1, -1, -1]
voxel_size = 2.0 / (resolution - 1)
vertices[:,0] = vertices[:,0]*voxel_size + voxel_origin[0]
vertices[:,1] = vertices[:,1]*voxel_size + voxel_origin[0]
vertices[:,2] = vertices[:,2]*voxel_size + voxel_origin[0]
mesh = trimesh.Trimesh(vertices, triangles)
return mesh
def load_checkpoint(self, checkpoint_name, dirNumber = 1):
if dirNumber == 1:
checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name), map_location=self.device)
print(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name))
self.sdf_network.load_state_dict(checkpoint['sdf_network_fine'])
self.iter_step = checkpoint['iter_step']
elif dirNumber == 2:
checkpoint = torch.load(os.path.join(self.base_exp_dir2, 'checkpoints', checkpoint_name), map_location=self.device)
print(os.path.join(self.base_exp_dir2, 'checkpoints', checkpoint_name))
self.sdf_network2.load_state_dict(checkpoint['sdf_network_fine'])
self.iter_step2 = checkpoint['iter_step']
else:
checkpoint = torch.load(os.path.join(self.base_exp_dir3, 'checkpoints', checkpoint_name), map_location=self.device)
print(os.path.join(self.base_exp_dir3, 'checkpoints', checkpoint_name))
self.sdf_network3.load_state_dict(checkpoint['sdf_network_fine'])
self.iter_step3 = checkpoint['iter_step']
def save_checkpoint(self,netNumber = 1):
if netNumber == 1:
checkpoint = {
'sdf_network_fine': self.sdf_network.state_dict(),
'iter_step': self.iter_step,
}
os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
elif netNumber == 2:
checkpoint = {
'sdf_network_fine': self.sdf_network2.state_dict(),
'iter_step': self.iter_step2,
}
os.makedirs(os.path.join(self.base_exp_dir2, 'checkpoints'), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir2, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step2)))
else:
checkpoint = {
'sdf_network_fine': self.sdf_network3.state_dict(),
'iter_step': self.iter_step3,
}
os.makedirs(os.path.join(self.base_exp_dir3, 'checkpoints'), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir3, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step3)))
if __name__ == '__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str, default='./confs/conf.conf')
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--mcubes_threshold', type=float, default=0.0)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--dir', type=str, default='T4')
parser.add_argument('--dir2', type=str, default=None)
parser.add_argument('--dir3', type=str, default=None)
parser.add_argument('--dataname', type=str, default='T4')
parser.add_argument('--dataname2', type=str, default=None)
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
runner = Runner(args, args.conf, args.mode)
if args.mode == 'train':
# Train Row-Column Scan
print('Train fco')
runner.train1() # Column
print('Train fro')
runner.train2() # Row
# Load fco and fro
runner.load_checkpoint('ckpt_010000.pth',dirNumber=1)
qury_function1 = runner.query_function(netNumber=1) # f_co
runner.load_checkpoint('ckpt_010000.pth',dirNumber=2)
qury_function2 = runner.query_function(netNumber=2) # f_ro
# CSG fusion and SDF Sampler
runner.dataset_roco3 = SDFSampler(runner.conf['dataset'], args.dataname+'_sampler',qury_function1,qury_function2,args.gpu)
print('Train roco')
# Optimize SDF
runner.train3() # Row
elif args.mode == 'train_refine':
# Load fco and fro
runner.load_checkpoint('ckpt_010000.pth',dirNumber=1)
qury_function1 = runner.query_function(netNumber=1) # f_co
runner.load_checkpoint('ckpt_010000.pth',dirNumber=2)
qury_function2 = runner.query_function(netNumber=2) # f_ro
# CSG fusion and SDF Sampler
runner.dataset_roco3 = SDFSampler(runner.conf['dataset'], args.dataname+'_sampler',qury_function1,qury_function2,args.gpu)
# Optimize SDF
runner.train3()