Download this file

59 lines (53 with data), 2.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pytorch_lightning as pl
import torch
class TumourSegmentation(pl.LightningModule):
def __init__(self, train_dataset, val_dataset, col_fn, learning_rate, in_channels=4,classes=(1,2,4)):
super().__init__()
self.model = UNet3D(in_channels=in_channels, n_classes=len(classes), base_n_filter=8)
self.learning_rate = learning_rate
self.in_channels = in_channels
self.classes = classes
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.col_fn = col_fn
def forward(self,x):
f = self.model.forward(x)
return f
def training_step(self, batch, batch_idx):
x= batch['data']
y = torch.cat([batch['seg'][:,1:3],batch['seg'][:,4].unsqueeze(dim=1)],dim = 1)
y_hat = self.forward(x)
loss = -1*compute_per_channel_dice(y_hat, y)
loss[loss != loss] = 0
# basic mean of all channels for now
for i in range(len(self.classes)):
if self.classes[i] == 1:
self.log('train_loss_core',loss[i],prog_bar=True,logger=True)
elif self.classes[i] == 2:
self.log('train_loss_edema',loss[i],prog_bar=True,logger=True)
elif self.classes[i] == 4:
self.log('train_loss_enhancing',loss[i],prog_bar=True,logger=True)
loss = torch.sum(loss)
return loss
def validation_step(self, batch, batch_idx):
x= batch['data']
y = torch.cat([batch['seg'][:,1:3],batch['seg'][:,4].unsqueeze(dim=1)],dim = 1)
y_hat = self.forward(x)
# basic mean of all channels for now
loss = -1*compute_per_channel_dice(y_hat, y)
loss[loss != loss] = 0
for i in range(len(self.classes)):
if self.classes[i] == 1:
self.log('test_loss_core',loss[i],prog_bar=True,logger=True)
elif self.classes[i] == 2:
self.log('test_loss_edema',loss[i],prog_bar=True,logger=True)
elif self.classes[i] == 4:
self.log('test_loss_enhancing',loss[i],prog_bar=True,logger=True)
loss = torch.sum(loss)
return loss
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_dataset,batch_size=2,num_workers=2,collate_fn=self.col_fn)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_dataset,batch_size=2,num_workers=2,collate_fn=self.col_fn)
def configure_optimizers(self):
return torch.optim.AdamW(self.parameters(), lr=self.learning_rate)