90 lines (89 with data), 1.7 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f_d = load_dataset('../Radiology_and_AI/datasets/brats',data_version='1.0.0',data_folder=\"../../mnt/c/Users/Cameron/Downloads/archive/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"f_d.save_to_disk('./processed_training_dataset')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"f_d.cleanup_cache_files()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_from_disk\n",
"f_d = load_from_disk('./processed_training_dataset')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f_d['validation'][0]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"f_d.set_format('torch')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}