|
a |
|
b/Notebooks/usage.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"## Training Example" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"#### Training a model is very simple, follow this example to train your own model" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"#First import the training tool and the torchio library\n", |
|
|
24 |
"import sys\n", |
|
|
25 |
"sys.path.append('../Radiology_and_AI')\n", |
|
|
26 |
"from training.run_training import run_training\n", |
|
|
27 |
"import torchio as tio" |
|
|
28 |
] |
|
|
29 |
}, |
|
|
30 |
{ |
|
|
31 |
"cell_type": "code", |
|
|
32 |
"execution_count": 4, |
|
|
33 |
"metadata": {}, |
|
|
34 |
"outputs": [], |
|
|
35 |
"source": [ |
|
|
36 |
"#Next define what transforms you want applied to the training data\n", |
|
|
37 |
"#Both the training and validation data must have the same normalization and data preparation steps\n", |
|
|
38 |
"#Only the training samples should have the augmentations applied\n", |
|
|
39 |
"#Any transforms found at https://torchio.readthedocs.io/transforms/transforms.html can be applied\n", |
|
|
40 |
"#Keep track of the normalization and data preparation steps steps performed, you will need to apply the to all data passed into the model into the future\n", |
|
|
41 |
"\n", |
|
|
42 |
"#These transforms are applied to data before it is used for training the model\n", |
|
|
43 |
"training_transform = tio.Compose([\n", |
|
|
44 |
" #Normalization\n", |
|
|
45 |
" tio.ZNormalization(masking_method=tio.ZNormalization.mean), \n", |
|
|
46 |
" \n", |
|
|
47 |
" #Augmentation\n", |
|
|
48 |
" #Play around with different augmentations as you desire, refer to the torchio docs to see how they work\n", |
|
|
49 |
" tio.RandomNoise(p=0.5),\n", |
|
|
50 |
" tio.RandomGamma(log_gamma=(-0.3, 0.3)),\n", |
|
|
51 |
" tio.RandomElasticDeformation(),\n", |
|
|
52 |
" \n", |
|
|
53 |
" #Preparation\n", |
|
|
54 |
" tio.CropOrPad((240, 240, 160)), #Crop/pad the images to a dimension your model can handle, our default unnet model requires the dimensions be multiples of 8\n", |
|
|
55 |
" tio.OneHot(num_classes=5), #Set num_classes to the max segmentation label + 1\n", |
|
|
56 |
" \n", |
|
|
57 |
"])\n", |
|
|
58 |
"\n", |
|
|
59 |
"#These transforms are applied to data before it is used to determined the performance of the model on the validation set\n", |
|
|
60 |
"validation_transform = tio.Compose([\n", |
|
|
61 |
" #Normalization\n", |
|
|
62 |
" tio.ZNormalization(masking_method=tio.ZNormalization.mean),\n", |
|
|
63 |
" \n", |
|
|
64 |
" #Preparation\n", |
|
|
65 |
" tio.CropOrPad((240, 240, 160)), \n", |
|
|
66 |
" tio.OneHot(num_classes=5) \n", |
|
|
67 |
" \n", |
|
|
68 |
"])" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": null, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [], |
|
|
76 |
"source": [ |
|
|
77 |
"#The run training method applies the transforms you set and trains a model based on the parameters set here\n", |
|
|
78 |
"run_training(\n", |
|
|
79 |
" #input_data_path must be set to the path to the folder containing the subfolders for each training example.\n", |
|
|
80 |
" #Each subfolder should contain one nii.gz file for each of the imaging series and the segmentation for that example\n", |
|
|
81 |
" #The name of each nii.gz file should be the name of the parent folder followed by the name of the imaging series type or seg if it is the segmentation\n", |
|
|
82 |
" #For example,MICCAI_BraTS2020_TrainingData contains ~300 folders, each corresponding to an input example,\n", |
|
|
83 |
" # one folder BraTS20_Training_001, contains five files: BraTS20_Training_001_flair.nii.gz, BraTS20_Training_001_seg.nii.gz, BraTS20_Training_001_t1.nii.gz , BraTS20_Training_001_t2.nii.gz,and BraTS20_Training_001_t1ce.nii.gz\n", |
|
|
84 |
" input_data_path = '../../brats_new/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData',\n", |
|
|
85 |
" \n", |
|
|
86 |
" #Where you want your trained model to be saved after training is completed\n", |
|
|
87 |
" output_model_path = '../Models/test_train_many_1e-3.pt',\n", |
|
|
88 |
" \n", |
|
|
89 |
" #The transforms you created previously\n", |
|
|
90 |
" training_transform = training_transform, \n", |
|
|
91 |
" validation_transform = validation_transform,\n", |
|
|
92 |
" \n", |
|
|
93 |
" #The names of the modalities every example in your input data has\n", |
|
|
94 |
" input_channels_list = ['flair','t1','t2','t1ce'],\n", |
|
|
95 |
" \n", |
|
|
96 |
" #Which of the labels in your segmentation you want to train your model to predict\n", |
|
|
97 |
" seg_channels = [1,2,4],\n", |
|
|
98 |
" \n", |
|
|
99 |
" #The name of the type of model you want to train, currently UNet3D is the only available model\n", |
|
|
100 |
" model_type = 'UNet3D',\n", |
|
|
101 |
" \n", |
|
|
102 |
" #The amount of examples per training batch, reduce/increase this based on memory availability\n", |
|
|
103 |
" batch_size = 1,\n", |
|
|
104 |
" \n", |
|
|
105 |
" #The amount of cpus you want to be avaiable for loading the input data into the model\n", |
|
|
106 |
" num_loading_cpus = 1,\n", |
|
|
107 |
" \n", |
|
|
108 |
" #The learning rate of the AdamW optimizer\n", |
|
|
109 |
" learning_rate = 1e-3,\n", |
|
|
110 |
" \n", |
|
|
111 |
" #Whether or not you want to run wandb logging of your run, install wandb to use these parameters\n", |
|
|
112 |
" wandb_logging = False,\n", |
|
|
113 |
" wandb_project_name = None,\n", |
|
|
114 |
" wandb_run_name = None,\n", |
|
|
115 |
" \n", |
|
|
116 |
" #The seed determines how your training and validation data will be randomly split\n", |
|
|
117 |
" #training_split_ratio is the share of your input data you want to use for training the model, the remainder is used for the validation data\n", |
|
|
118 |
" #Keep track of both the seed and ratio used if you want to be able to split your input data the same way in the future\n", |
|
|
119 |
" seed=42, \n", |
|
|
120 |
" training_split_ratio = 0.9,\n", |
|
|
121 |
" \n", |
|
|
122 |
" #Any parameters which can be applied to a pytorch lightning trainer can also be applied, below is a selection of parameters you can apply\n", |
|
|
123 |
" #Refer to https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api to see the other parameters you could apply\n", |
|
|
124 |
" max_epochs=10,\n", |
|
|
125 |
" amp_backend = 'apex',\n", |
|
|
126 |
" amp_level = 'O1',\n", |
|
|
127 |
" precision=16,\n", |
|
|
128 |
" check_val_every_n_epoch = 1,\n", |
|
|
129 |
" log_every_n_steps=10, \n", |
|
|
130 |
" val_check_interval= 50,\n", |
|
|
131 |
" progress_bar_refresh_rate=1, \n", |
|
|
132 |
")" |
|
|
133 |
] |
|
|
134 |
}, |
|
|
135 |
{ |
|
|
136 |
"cell_type": "markdown", |
|
|
137 |
"metadata": {}, |
|
|
138 |
"source": [ |
|
|
139 |
"## Evaluation Example" |
|
|
140 |
] |
|
|
141 |
}, |
|
|
142 |
{ |
|
|
143 |
"cell_type": "markdown", |
|
|
144 |
"metadata": {}, |
|
|
145 |
"source": [ |
|
|
146 |
"#### If you want to evaluate your model in the future on a certain test dataset follow the below" |
|
|
147 |
] |
|
|
148 |
}, |
|
|
149 |
{ |
|
|
150 |
"cell_type": "code", |
|
|
151 |
"execution_count": null, |
|
|
152 |
"metadata": {}, |
|
|
153 |
"outputs": [], |
|
|
154 |
"source": [ |
|
|
155 |
"#First import the training tool and the torchio library\n", |
|
|
156 |
"import sys\n", |
|
|
157 |
"sys.path.append('.../Radiology_and_AI')\n", |
|
|
158 |
"from training.run_training import run_eval\n", |
|
|
159 |
"import torchio as tio" |
|
|
160 |
] |
|
|
161 |
}, |
|
|
162 |
{ |
|
|
163 |
"cell_type": "code", |
|
|
164 |
"execution_count": null, |
|
|
165 |
"metadata": {}, |
|
|
166 |
"outputs": [], |
|
|
167 |
"source": [ |
|
|
168 |
"#Whatever normalization and data preperation steps you performed must also be applied here\n", |
|
|
169 |
"#Refer to the above for more info\n", |
|
|
170 |
"#These transforms are applied to data before it is used to determined the performance of the model on the validation set\n", |
|
|
171 |
"test_transform = tio.Compose([\n", |
|
|
172 |
" #Normalization\n", |
|
|
173 |
" tio.ZNormalization(masking_method=tio.ZNormalization.mean),\n", |
|
|
174 |
" \n", |
|
|
175 |
" #Preparation\n", |
|
|
176 |
" tio.CropOrPad((240, 240, 160)), \n", |
|
|
177 |
" tio.OneHot(num_classes=5) \n", |
|
|
178 |
" \n", |
|
|
179 |
"])" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": null, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [], |
|
|
187 |
"source": [ |
|
|
188 |
"#The run_eval method evaluates and prints your models performance on a test dataset by averaging the Dice loss per batch\n", |
|
|
189 |
"run_eval(\n", |
|
|
190 |
" #The path to the folder containing the data, refer to the training example for more info\n", |
|
|
191 |
" input_data_path= '../../brats_new/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData',\n", |
|
|
192 |
" \n", |
|
|
193 |
" #The path to the saved model weights\n", |
|
|
194 |
" model_path=\"../../randgamma.pt\",\n", |
|
|
195 |
" \n", |
|
|
196 |
" #The transforms you specified above\n", |
|
|
197 |
" validation_transform=validation_transform, \n", |
|
|
198 |
" \n", |
|
|
199 |
" #The names of the modalities every example in your input data has\n", |
|
|
200 |
" input_channels_list = ['flair','t1','t2','t1ce'],\n", |
|
|
201 |
" #Which of the labels in your segmentation you want to train your model to predict\n", |
|
|
202 |
" seg_channels = [1,2,4],\n", |
|
|
203 |
" #The name of the type of model you want to train, currently UNet3D is the only available model\n", |
|
|
204 |
" model_type = 'UNet3D'\n", |
|
|
205 |
" \n", |
|
|
206 |
" #If set to true, we only return the performance of the model on the example which were not used for training, based on the train_val_split_ration and seed\n", |
|
|
207 |
" #If false we evaluate on all data and ignore seed and training_split_ratio,\n", |
|
|
208 |
" #set to false if input_data_path is set to a dataset you did not use during training\n", |
|
|
209 |
" is_validation_data = True,\n", |
|
|
210 |
" training_split_ratio=0.9,\n", |
|
|
211 |
" seed=42,\n", |
|
|
212 |
" \n", |
|
|
213 |
" #The amount of examples per training batch, reduce/increase this based on memory availability\n", |
|
|
214 |
" batch_size=1,\n", |
|
|
215 |
" #The amount of cpus you want to be avaiable for loading the input data into the model\n", |
|
|
216 |
" num_loading_cpus = 1, \n", |
|
|
217 |
")" |
|
|
218 |
] |
|
|
219 |
}, |
|
|
220 |
{ |
|
|
221 |
"cell_type": "markdown", |
|
|
222 |
"metadata": {}, |
|
|
223 |
"source": [ |
|
|
224 |
"## Visualization Example" |
|
|
225 |
] |
|
|
226 |
}, |
|
|
227 |
{ |
|
|
228 |
"cell_type": "markdown", |
|
|
229 |
"metadata": {}, |
|
|
230 |
"source": [ |
|
|
231 |
"#### Tools for generating gifs, slices, and nifti files from input data and model predictions" |
|
|
232 |
] |
|
|
233 |
}, |
|
|
234 |
{ |
|
|
235 |
"cell_type": "code", |
|
|
236 |
"execution_count": 10, |
|
|
237 |
"metadata": {}, |
|
|
238 |
"outputs": [], |
|
|
239 |
"source": [ |
|
|
240 |
"#First import the training tool and the torchio library\n", |
|
|
241 |
"import sys\n", |
|
|
242 |
"sys.path.append('../Radiology_and_AI')\n", |
|
|
243 |
"sys.path.append('../../MedicalZooPytorch')\n", |
|
|
244 |
"from visuals.run_visualization import gen_visuals\n", |
|
|
245 |
"import torchio as tio" |
|
|
246 |
] |
|
|
247 |
}, |
|
|
248 |
{ |
|
|
249 |
"cell_type": "code", |
|
|
250 |
"execution_count": 11, |
|
|
251 |
"metadata": {}, |
|
|
252 |
"outputs": [], |
|
|
253 |
"source": [ |
|
|
254 |
"#Whatever normalization and data preperation steps you performed must also be applied here\n", |
|
|
255 |
"#Refer to the above for more info\n", |
|
|
256 |
"#These transforms are applied to data before it is used to determined the performance of the model on the validation set\n", |
|
|
257 |
"validation_transform = tio.Compose([\n", |
|
|
258 |
" #Normalization\n", |
|
|
259 |
" tio.ZNormalization(masking_method=tio.ZNormalization.mean),\n", |
|
|
260 |
" \n", |
|
|
261 |
" #Preparation\n", |
|
|
262 |
" tio.CropOrPad((240, 240, 160)), \n", |
|
|
263 |
" tio.OneHot(num_classes=5) \n", |
|
|
264 |
"])" |
|
|
265 |
] |
|
|
266 |
}, |
|
|
267 |
{ |
|
|
268 |
"cell_type": "code", |
|
|
269 |
"execution_count": 12, |
|
|
270 |
"metadata": {}, |
|
|
271 |
"outputs": [ |
|
|
272 |
{ |
|
|
273 |
"name": "stderr", |
|
|
274 |
"output_type": "stream", |
|
|
275 |
"text": [ |
|
|
276 |
"/home/cameron/storage/miniconda3/envs/cameronenv/lib/python3.8/site-packages/matplotlib/image.py:446: UserWarning: Warning: converting a masked element to nan.\n", |
|
|
277 |
" dv = np.float64(self.norm.vmax) - np.float64(self.norm.vmin)\n", |
|
|
278 |
"/home/cameron/storage/miniconda3/envs/cameronenv/lib/python3.8/site-packages/matplotlib/image.py:453: UserWarning: Warning: converting a masked element to nan.\n", |
|
|
279 |
" a_min = np.float64(newmin)\n", |
|
|
280 |
"/home/cameron/storage/miniconda3/envs/cameronenv/lib/python3.8/site-packages/matplotlib/image.py:458: UserWarning: Warning: converting a masked element to nan.\n", |
|
|
281 |
" a_max = np.float64(newmax)\n" |
|
|
282 |
] |
|
|
283 |
} |
|
|
284 |
], |
|
|
285 |
"source": [ |
|
|
286 |
"#The gen_visuals method can be used for generating gifs of the inpu\n", |
|
|
287 |
"gen_visuals(\n", |
|
|
288 |
" #The path to the folder containing the nifti files for an example\n", |
|
|
289 |
" image_path=\"../../brats_new/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/BraTS20_Training_010\",\n", |
|
|
290 |
" \n", |
|
|
291 |
" #The transforms applied to the input should the same applied to the validation data during model training\n", |
|
|
292 |
" transforms = validation_transform,\n", |
|
|
293 |
" \n", |
|
|
294 |
" #The path to the model to use for predictions \n", |
|
|
295 |
" model_path = \"../Models/test_train_many_1e-3.pt\",\n", |
|
|
296 |
" \n", |
|
|
297 |
" #Generate visuals using segmentations generated by the model\n", |
|
|
298 |
" gen_pred = True,\n", |
|
|
299 |
" #Generate visuals using annotated segmentations\n", |
|
|
300 |
" gen_true = True,\n", |
|
|
301 |
" \n", |
|
|
302 |
" #The modalities your input example has\n", |
|
|
303 |
" input_channels_list = ['flair','t1','t2','t1ce'],\n", |
|
|
304 |
" #The labels your segmentation has\n", |
|
|
305 |
" seg_channels = [1,2,4],\n", |
|
|
306 |
"\n", |
|
|
307 |
" #Save a gif of the brain in 3D spinning on its vertical axis\n", |
|
|
308 |
" gen_gif = False,\n", |
|
|
309 |
" #Where to output the gif of the brain with segmentations either from the annotated labels or the predicted labels\n", |
|
|
310 |
" true_gif_output_path = \"../../output/true\",\n", |
|
|
311 |
" pred_gif_output_path = \"../../output/pred\", \n", |
|
|
312 |
" #Which segmentation labels to display in the gif\n", |
|
|
313 |
" seg_channels_to_display_gif = [1,2,4],\n", |
|
|
314 |
" #The angle from the horizontal axis you are looking down on the brain at as it is spinning\n", |
|
|
315 |
" gif_view_angle = 30,\n", |
|
|
316 |
" #How much the brain rotates between images of the gif\n", |
|
|
317 |
" gif_angle_rotation = 20,\n", |
|
|
318 |
" #fig size of the gif images\n", |
|
|
319 |
" fig_size_gif = (50,25),\n", |
|
|
320 |
"\n", |
|
|
321 |
" #Save an image of slices of the brain at different views and with segmentations\n", |
|
|
322 |
" gen_slice = True,\n", |
|
|
323 |
" #where to save the generated slice image\n", |
|
|
324 |
" slice_output_path = \"../../output/slices\",\n", |
|
|
325 |
" #Fig size of the slice images\n", |
|
|
326 |
" fig_size_slice = (25,50),\n", |
|
|
327 |
" #Which seg labels to display in the slice, they will be layered in this order on the image\n", |
|
|
328 |
" seg_channels_to_display_slice = [2,4,1],\n", |
|
|
329 |
" #Which slice to display for different views of the brain\n", |
|
|
330 |
" sag_slice = None, #Sagittal\n", |
|
|
331 |
" cor_slice = None, #Coronal\n", |
|
|
332 |
" axi_slice = None, #Axial\n", |
|
|
333 |
" disp_slice_base = True, #WHether or not to display the input image in the background\n", |
|
|
334 |
" slice_title = None, #THe title of the slice images figure\n", |
|
|
335 |
"\n", |
|
|
336 |
" gen_nifti = True, #Whether or not to generate nifti files for the input image and the segmentations\n", |
|
|
337 |
" nifti_output_path = \"../../output/nifti\", #WHere to ssave the nifti files\n", |
|
|
338 |
")" |
|
|
339 |
] |
|
|
340 |
}, |
|
|
341 |
{ |
|
|
342 |
"cell_type": "code", |
|
|
343 |
"execution_count": null, |
|
|
344 |
"metadata": {}, |
|
|
345 |
"outputs": [], |
|
|
346 |
"source": [] |
|
|
347 |
} |
|
|
348 |
], |
|
|
349 |
"metadata": { |
|
|
350 |
"kernelspec": { |
|
|
351 |
"display_name": "cameronenvironment", |
|
|
352 |
"language": "python", |
|
|
353 |
"name": "cameronenvironment" |
|
|
354 |
}, |
|
|
355 |
"language_info": { |
|
|
356 |
"codemirror_mode": { |
|
|
357 |
"name": "ipython", |
|
|
358 |
"version": 3 |
|
|
359 |
}, |
|
|
360 |
"file_extension": ".py", |
|
|
361 |
"mimetype": "text/x-python", |
|
|
362 |
"name": "python", |
|
|
363 |
"nbconvert_exporter": "python", |
|
|
364 |
"pygments_lexer": "ipython3", |
|
|
365 |
"version": "3.8.5" |
|
|
366 |
} |
|
|
367 |
}, |
|
|
368 |
"nbformat": 4, |
|
|
369 |
"nbformat_minor": 4 |
|
|
370 |
} |