232 lines (232 with data), 158.0 kB
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3.6.10 64-bit ('tensorflow-env': conda)",
"metadata": {
"interpreter": {
"hash": "34cc118536bbb669e3d71475d5ff37888807ba9f32b9ec6249171fe320fe5dc3"
}
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from google.colab import drive\n",
"#drive.mount('/content/drive', force_remount=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The following line will be problematic for other users\n",
"# It will have to be changed to a location on YOUR drive, probably in \"Shared with Me\"\n",
"# or similar"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# \n",
"#cd drive/MyDrive/'MacAI BraTS samples'"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import nibabel as nb\n",
"import os \n",
"from multiprocessing.dummy import Pool as ThreadPool\n",
"import numpy as np\n",
"from time import time\n",
"import matplotlib.pyplot as plt\n",
"from skimage.transform import rescale, resize, downscale_local_mean"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Flatten, Dense, Conv3D, MaxPooling3D, AveragePooling3D"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"training_parent = 'sample_data' #'BraTS2020_TrainingData/MICCAI_BrATS2020_TrainingData'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def load_img(path):\n",
" this_ext = nb.load(path).get_fdata()\n",
" this_ext = np.expand_dims(this_ext, axis=-1)\n",
" return this_ext\n",
"\n",
"def subfolder_load(subfolder):\n",
" \"\"\"\n",
" Function for loading a subfolder of the BraTS20 training data.\n",
" Args:\n",
" subfolder (str): Path to subfolder with an additional \"BraTS20_Training_XXX\" for attaching file extensions \n",
" Returns:\n",
" np.ndarray\n",
" \"\"\"\n",
" pool = ThreadPool(5)\n",
" paths = [subfolder + ext for ext in ['_t1.nii', '_flair.nii', '_t1ce.nii', '_t2.nii', '_seg.nii']]\n",
" loaded_data = pool.map(load_img, paths)\n",
" return np.transpose(loaded_data, [4, 1, 2, 3, 0])\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Loading time: 99.0\n"
]
}
],
"source": [
"# This part of the code is not threaded as converting from list (normally outputted by pool.map) to np.ndarray is memory-intensive\n",
"# There's probably a way to do this without this issue outside of the multiprocessing library\n",
"\n",
"t = time()\n",
"images = None\n",
"subfolders = [os.path.join(training_parent, child, child) for child in os.listdir(training_parent)][:10]\n",
"for file_target in subfolders:\n",
" if images is None:\n",
" images = subfolder_load(file_target)\n",
" else:\n",
" images = np.concatenate([images, subfolder_load(file_target)], axis=0)\n",
"\n",
"print('Loading time: ' + str(np.round(time()-t)))"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"\n",
"model = Sequential()\n",
"model.add(AveragePooling3D(input_shape = (images.shape[1], images.shape[2], images.shape[3], images.shape[4])))\n",
"\n",
"pooled_images = model.predict(images)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x21694a416a0>"
]
},
"metadata": {},
"execution_count": 29
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 1440x720 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<!-- Created with matplotlib (https://matplotlib.org/) -->\r\n<svg height=\"577.344844pt\" version=\"1.1\" viewBox=\"0 0 391.5625 577.344844\" width=\"391.5625pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <defs>\r\n <style type=\"text/css\">\r\n*{stroke-linecap:butt;stroke-linejoin:round;}\r\n </style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 577.344844 \r\nL 391.5625 577.344844 \r\nL 391.5625 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 33.2875 553.466719 \r\nL 384.3625 553.466719 \r\nL 384.3625 9.866719 \r\nL 33.2875 9.866719 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pac404cc96f)\">\r\n <image height=\"544\" id=\"imagec79d71070a\" transform=\"scale(1 -1)translate(0 -544)\" width=\"352\" x=\"33\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAAWAAAAIgCAYAAAC70bO9AAAABHNCSVQICAgIfAhkiAAAIABJREFUeJzsvdmzZ9l91bnuPGXevDlPNZeqVFVSSZYtZLUHIBxgYSSFsdzYWMJgME1E88gf0P1E9xsPHUGEO5oOTBBYYCHChG1hyRDGRsaaS0PNY9aUQ+V8M+/NO99+2Puz9zr7d6rallJ1KrO+6+Xe+/udYZ99Tp5c+/v9rvUd293a3FUgEAgE3naMDz2AQCAQeLciXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwEOIFHAgEAgMhXsCBQCAwECaHHkDg7cNnP/tZSdLW1pYkaWHPgiRpfHyibHNjdVWStLu7K0manKyPyMbmpiTp2vKyJGltfT1tu7NTthkbT/+nT09NSZLm5uYkSf/wH/7Dm3kpgcBtgWDAgUAgMBDiBRwIBAIDYWx3a3N36EEEvj988UtfKr9fvHBBknT58mVJ0noOD9y4caNsMz6R/r89cOCAJGl2NoUHZmam6zY5HDE5mX5ubGyU765cviJJWltfSz/X0jnGxsbKNoQ3dnJYYmIiHWfPwkLZ5u577pYkHT1yVJJ0/fr18t3VHN74xU996q0vPhC4DRAMOBAIBAZCMOBbEP/tj/9YkrRm7HZtLbFSGCvMdzUn1aTKRne129lmcqIm2vbt2ydJ2n9gvyRpfb0yYFj2cmap/OTcjsV9i5Kk+bl5SdLs3Gz57s477pQk7V1cHNmP5B1M+uy5c5Kk06dfL9tcvXJVkrSZk4Kw/anpqXr+venYW9vpONevXe/MgST9s3/2zyRJ/+Jf/Iv0gTH5/UtLkqRPf/rTI2MMBG4WggEHAoHAQAgG/A7H5z//+fI7TA9Q4iVJh48cliRNTaV47muvvipJunbtWtmGGPDy1cRcNzPL1G59BMZzGdmRI0ckdRnj8rW034ULFyVJ586dlSSt3agMGKa7tC8xyPn5xICd7R7Yv79z7J3dWsYGc53I5W9nz57tXI/UjWv7/lubW+WzsfHEZre2ttO1bm6oxfhYulbm0a+VMryFPXvydaRtvGRvPDPm6ek057/+678+co5A4K0QDDgQCAQGQryAA4FAYCBECOIdit/+3OckSWfPnCmfER5gqVxCCKqlZCynWY57iRclais5MUfCa2a2Jsj25VDB4cMppOGJqUuXLnWO+frrr0mSLl68VLYheXXw0CFJ0hJJvRx2kGoohONcu1bHyFL/xImTkqTtJhkn1cQiyb/VlRVJ0g1LBm7lBB0gYbdtqj3mcXZmZmQemJvp/B1/o/STpM2c8OTYhCI83LK0xPUfyD+Xynd/5S//FQXe3QgGHAgEAgMhvCDeodjZSckjZ2yUZuHPsL29Xb5bz0kj8mkwR1ivJJ0/f15SLddayAkyWJokHTxwUFJNYq2u1DI2zkepG8k3T17tyUmr2dnMHDODdLEGx4T5wmClmmhEJLK4d6+kyoylym63bQXQoqwS8raIR0jKdbfZ6FxfPmH3gHliN7cqs2aVwXHKOS7VccHyz517Q5I0Zyz78e89nvbP95PVwy//8i+/6XUFbi8EAw4EAoGBEAz4HYbf+U//SVJlYx3ml9kbzA+W6sCpjDjpigkxljLDIk6MWALWKlWmurmRmJ5LkWHlACbt7Jb47s7ObmefLWOr/E6pl8dVAefdydtQXidJM5lVI3deyDJnZ+LMzXqWS3Munw+Y7+5O+mewOVXHuLKaWDmslvius2TmiHlgjFvj9TjEqdnf53NqajJfRxobMfUn/rcnyjbHjh+TJN17772SpJ/7Gz+nwO2DYMCBQCAwEIIBv0NQ5MVrSWSws70zss1Gjo+uN9n3tH1iZjDG61mAAfOSamUCcuM+VobYYrenNmZmOjHP1Yk0RkQJExN1Y8bdiaeqZaewZLatjHF3J31HnHejEZ9INa5MVQjXcaNHEj2+lJgw0uqLFy+W71pzoeXlq3W/cm3pJ7HbmRzblqyyIl/r7EzaZmqqSqLxTCYWPGEiktl8TGL6u5kJs4qQpPNvpLj9hfNJBv7E44kdHzt+vGzzdz/zmZHrDtwaCAYcCAQCAyFewIFAIDAQIgQxIJ586sny+/nzqUwJnwaWtVu2POezzUZk4KClEMtgwg5SLXPCn4GSKg9BlNKusdEE38pKWka/8UYaK+VjLjxAzIBwgcSUO5VNbqRlfV9ia2Oju2QnwechDJJ4LNUnczJrdreGB8q58vJ+Mo/HQzss+bcv7+TvagiD5GGbeNzwsE/+jpK5vhAI83BlhaReDalQBsj9YM53bRvmDd+KUgpo4/jn//yfS5L+6T/9pyPnD7yzEQw4EAgEBkJIkQfAS6dekiQ98/Qz5bNTL78saZR4uh8vTBWHMxcibDTihEOHE/Pdv1QlwJSfwTxJPq1cr0IIEmMMxEUSOJNdvpLEHZSvHTl8pGxDSRjnml9oBA2qpWEwcD8/zBeHMxi0NwctZWx5rFP5esZt8mCKCFnY1lcPpbPHja6XcvpuvXMcpN6wZh8jyTfgbJ2EIQk+l4aT1NybxSaMdcLK8kiYUkbHigifZT/fnr3pfnhZ4T/5X/+JAu9cBAMOBAKBgRAx4JuE3/md35FUZaUuOYWRwArXc5xz2bx6YWhzmUH2lYhdvZLKpmCll/PfUhUVwEZhSO61C0uGTSEkcFMfzkcZ2BU7B8wbxnc4n8uNduZyPJOecvX6KnMkZlvKv3Lpm1RLw7YambEb5XBsmCvjx1RHqvFh5MIlZmr1ddwXju3lX8w/3UOIwboX8eZ61+CHeC/X5dc2psTOvfsIIg2P8/u5pBrL59lh+B5LnsrPXO0UUo/3G7/xG53rYV7/8T/+xwoMj2DAgUAgMBCCAd8kXMqmN8Tvdo1pEUdc2JPYLbG/XTPaoZKAMGaR4u6MmsfMZ5a8szPKbmE6sEIYXDpfZr6ZLVMR4HFnGNLVq4lNOcsu8cd8ftgZcUpJOnr0aOe8GADd2KjMEVZKxcfFC1UcAcNs46Eeu+U7WDrz0Imv5pgtjHOzx7iHczGvLlqZ25sYZzElWk3b+ooEVsv9Xcv3yuP27bG3Oxai6TnwziY+Lj8f4hX2d0HI+sZ251r9niNkQYhCx5H/51/+y7LN//KP/pECwyAYcCAQCAyEeAEHAoHAQIgQxA+Az372s+V3lposGT0hxPKTJfLqeFpiLpjn7N5cQkRYgJbv7sc7UuhvsYNS9tX42HpCp5RH5f3wO/AlL6EHxjptvgaljC1/VsQitqymXIxrvjqdjndtuSYcr+Vjc16ScpI0p7nuufJxVs3FjLkp1zjeFSlI9T7sTqblOMlRLxHjd5bzXk5GMnE8hyAI37g3BWV0lNWR8PRzcI8JP/k5Wq/k9Xx/PYnHNdGNhMQpYSCphpS41wcOHizf7VtM94oQysLCnrxtfXb+1W/+K0nSP/i1f6DA24tgwIFAIDAQggH/AMAzVqpMtS+hsyezOeSwxfHMEnUkpmBzOGU5q4NhrVwf6xwn7ZeL8RFC5P07Xr+ZzcGyV2+kMTsDxkWNbQ+byKJe60rnb1izJL3w4guSqgAEduidPbgmrvXAgQP1OjKLgx1yHZ78gp3TPWMlj+eSdf8gQcZ1sP8eY46w7D2l60ZdPcAQuUfzeTe/jrKiyeyc/f16YJyILUgO+jyQtCv952z1hLScnnJFdGHXwTy8/vrrkqTXXn21fLdxJN2/Izk5eub06TQOK+s7eLCON/D2IhhwIBAIDIRgwN8Hfvf3fk9St0vDxERXuuoskVIy2CCxXI+vwsJgZcQMXRxwPR8TNufnn+sRE7Roe7nBfJ0BwxgpV/ISKcKGU5Pdx8bZ6eRa7vKQ2Xopl7pa2T6dIBBwzBobm51Lv1cGm6+nR0BRuiJTumarBdgwDBbm6PFZZNKMpyMhZgVDrz1kz3bt0003ZeLMU5P1vrZz5UIM2D5x3RKb93vYlKhR3jhucmWY98mTqZM0KxupziPPI/F2N0fy6w68vQgGHAgEAgMhGPD3AZhWxzgn/wHD8D5pdP9lP1iRF9O3todkrS9ZBwdirdeupzitV0hwuqXMKmFIXjmBcAEmjb2ks6mjR47msc12xipVVjixJzEmJNXEn6UaTzxx/ERnH4+Je8xYqsIUqYo9iFO31RCStHcxrRYuXkyVAVRheJcImHx7Lo/b755PbBKRgjPBNoYOu3UbyH1ZPNN2Z/Y4MauDUiVj88kcI8Lh/rhoZGKyy3iZ806HkXzz+bl3z97yXSupZl5vrNZVD0KY3/zN35Qk/dqv/ZoCbw+CAQcCgcBAiBdwIBAIDIQIQfwF8Nuf+5yk0WWtVMuWWD5urNfwAEt+EigkTTq+AnmJ2SbK3IthJZc9kY9iKS7V5M7lXLDvxwZbTRNJltP79y+VbUjsUdw/M1vL2CivWswJQzwYfFnOkp2W93SLmLSEI+3X3QcYtE09mU9vXU8p19JS8qBAHOEeCMeOpXAESaiLl9Iy26elJL+aa5ek2Znu/OF34aEiEnOUgZEU9NDUZJuw9I4aTYKQ0jL3EeHZwRNjdmuus28elKQabnKxCIlG3PHm5kdDOqW8MZ/r3/7Wv5UkfebT0ezzh41gwIFAIDAQggH/OfCFL3xBUhU+lLItYyEk1MYyQfLkF33Otra2O/u7HJTSI6Sq2z0OX7BC/HBd1lo8djNzLj6+u6MdHCgx2zdPGdZoOduhLGddMq/fQ4fSZyR5YMCe2CIhh3QXIcGWMT/Y17Xdem3tdySbkOf6PLQJssOHD6fruFJZNmxuPCfmGKuX3BWZcy7bOnvmTPmuTYou5VWCl5HBykkUwoBJuqbrTgweabOvNkpSMzNg7qGfg3FfzCsbOmv4OXguYbnObil95JgzPQIfnsviI5yfy3/zb/5N2eZXf/VXFbj5CAYcCAQCAyEY8Jvg85//fPmduB1xVX4SJ5UqoyBWuDBfpaKIAmBxxA491kf8ssQT17sMUKr+scT1nBWuX03bw8Za4x1JWsQYJscaSzdhY9KwSUqzkNJK0nyOH8KY6PZwzTp7wLgo20KC6+VslNhRBuclVYgTYOswSIxvfHti8VX04SsCujJXVizVjs5SjQsTd3YfXxjrXGaVE9dGzYmKV3Hj0bu66hLxtA3xXS/ZYyVDGR7z6p2bi7S96YzRMR7KzwriCvdnXmm6MU9ltry6Us/BfsTrL164kK7Lnu/P/YeU//jb//PfVuDmIRhwIBAIDIR4AQcCgcBAiBDEm+CiKdDAZtP2Bw9fqea6WHpTqiXV5SxLZkIYHl7AUWtbaWnJktOXvIQMUMB5o0t8CViOT0+kMbrPwmJemhJKIGnjiTYSW5RPeTlb9Y5I58fjt9NCJ88RCcZWCSZJV3JIppTD2TkoDfNEkn+ejj3eOSYJT28EyrURtqEszsM+jBtl4ZiXf+WwCveYEIr7PC8tLXXGT/jIwwytSs7ngdORcOQax3p8nkuT1jy/rh7cl8ex0HhBS/V+sr+X84G2gaomR18LHu4K3DwEAw4EAoGBEAz4TeBMpRS9Z2YCg+x4B9ByPidyXEABa8I7gLKtPp8FSqKmt9PflJVJnsRL48HvQDLmOoEbWdrGBRAwnVr2NJWvpzKn+XwdjNFXAggndnqSiKBtSkoZmvtNMDaY7NZOZYkl4Zl/7u52hRn+e2lAuklStI6jNBzN50WQsZjvgSTdedddkqSzZ1P5mTN5rv/ll1+RJJ3I5WzuDtf6/67ka3UGSzkgCcs5m2vuA8lI5tfvGSsapnq88X1Iv6sD3585wvGt55aV57B1RfM559n7rd/6LUnSpz/96dEDBf7CCAYcCAQCAyEYcIM//MM/lNR1pIIhwDIpKYKdpG0S66ATBIxHqjFC4nats5Uk7R3P4ohM42DCly9XJg1Dm5pN55qxeCRo3cQcFO9T7gTj2TX3LuKp586lci3YmQM2WUvnrBwvz1vrletsv4giiszYKFymaJRNbVLyZ/cDmTBx6smeeHlxrKO9PSyvJwZKqVvfNXL9l3Pceq/F9plr7j3s2Oez7fu2Y98hTkEIMznFdVUmyneMG4HIZev+wb1GzOMCH1YQO3nVxCrMnx2ez7bHn8eLmaPz589Lkv7l/1vb2v+jX4+29t8vggEHAoHAQAgG3OCv//W/Lkk6/a//dfkMplu6TmRmsDBXxRawwdLXa93MTra7LIy4HN0fJOtyQVeFXBzv2X/vAefHkcyDNrOX8anEojoS4CmYM3HB9NOlxAgpOJd3VSauCzPazCy1r1Nw6byQr8fZFEyrmMd4FUQeP+cqhj92DhhmYZP44Bo7RYABSx7L41oxD+ULFxKbc4OcFsTUMcV5+eWXy3fEfvHzLezaGGjLuDc7FR8YHtH3Ls/9jcqSWXUxV9fxlnYmnZl4kRsbu+XY3PvSgdnmc6301svHziukLgPuzpEbH4VI4/tHMOBAIBAYCPECDgQCgYEQIYg3gZcr4XJFKGI5F+n7MgzPBNyqvF0Q+20sp8QcyS9vvshnZXl/YzPvW8/RJr98GUopVi3RmukcV6rL++UsoKCcrRULSFVMsL5Ry+BqK6Y0jrX1/J27uuX9KKkqAhUbB8lEQg+eNCKsQiKIny4oIaxAidxOCUnUsilCN4RyCLd4gqwkKndH55MEKXPeJxpBWMN8HMxuce4DQngD0Y3Pw6Hsu7GVwyOUel2xxOtyfmZo2lrCNze64Sip+j70hXuubpGczX4Tdq3ttfUlLAmBzNl9AMzDF7/0JUnSx372Z0e2CfQjGHAgEAgMhGDAb4JOoft4t9IdFuPtx2n7DTt1Bk2SBNZSknLOTjNjQ8BxLTMfZ8lHjx3rjMOlzMvXumVnfW3YdxtPXPa/ulxL5kbc1IyBk9iC1VHO5slAkj0krZAd9yV0uDaX1bL/Fr7Ado2g+CI3Tmcuza4lWXlFkVcI7vxG8qy0cbcpxBkMVujMGcCSi+jjUnpOXLbrXstSFWtINflVJd7pp98zVgDFiQ+hiiXRcGHjvJ5U5Fil4Wf+WVYvqnNEcplkJq57Ul3kkFz1bibF89hEKoE/H4IBBwKBwEAIBtzgv3/5y5K68UDigDBZyricGbcs9/JGLZSHqcFiiFV654NLueMBjOXosdQe/sjhI2WbO+64Q1KNayKWkKRnn31GUo3HwRJdykwsupUrX7GifvrOESOctpKmg7nsqnjsFkmxlV1NdsvPuFYXhjC3/IRJS1WEMJZZGSVVb9UZBLjMdgJDnDy2qYmpzjl9/0MHD6VrXx3tUYe3LwzaGS3PAfe1rCxMmAKjh11y76S6air3DNGIrRaId8O2YfkeE2clBqv1OHUpfczj6OsbR6lbq2n2EsTFxWTktJQNnVyGzrPi3tGBPx+CAQcCgcBACAbcgNirZ9RL/DJ/VDpimEiC2NrlK4lNLl+tcdXS1SDHNWE6zlQOZEvIBx54QJJ09913SzJ2otFYtMczx/N3L774oiTpjTeSyMDl0jCzyfks4c3sqC92R6G+F+BfyyyUGOFEj23hRiMdpirCWS6MGQa+Yux2sjGGIQbqzJXfJ+k/l8mY3zNYMsx7PsvHYa1SZdVsg7DCv4MBU9ngBjUAVsx3bkfJfNDB2u/nmdO1B50kLeZtvKPGet6/vfcuYyeGDQP3mDzS+CIzzvfTx3HoUFoB7MtdpkuVjjFg4sztNUvVbIpjvvDCC5Kk+++/X4G3RjDgQCAQGAjxAg4EAoGBECGIDFzQ+pbVLEfJUZCU82UgZTmEK/ZaGVpfKZUknTxxovz+oQ99SJJ0MC8H2/IhyZa4ucTKl6UnTpyUVBMhzzzztCTplVdeGdm/+Pk2n0s16bZ/YXTJXQr2c3iidOGwpX/rrMWc7Wx7oi3Pcf7SRQWEF7i20i3CGkQSepktHgqEPcomJaxAKOTcubOSuqEQMF58nmvZFUtskleUZHl4AN+NtnuJzxmhHMIknhRl/khoUc6F37RUE6alVC7DS9XWsn8H995DEHhztO50lJNJ0p7c9YNmnoRQPCfHM7/W49+xP3fk4PoJLb322mtlGxLIgS6CAQcCgcBAeNcz4C9+8YuSagkP7GFp31LZphTzb3UFCJSeSaMt4z0RQ5kX4gTknPfed2/Z5sjRVHZW+pxlVugCAM5BYsrlpCRCpg4mOezEI+/rjF2STr18SlJNxnFsxiVJ05lxz+aki/dAQ5wCOy3M09gpc7PbOJW5pBqW23aUkIxd5/uApHrNWDLjgEkXsYqxS+Z4sinDchcwesEp36vXT58u31Gixn1EWu6dPeC5CFkovXNXNp4r3OX2ZvmxZHLn7Iq3d8/evE8dYxGt5HGw2nAP44X8zPHM+nPBvW2FQl46yD2DnbeyeN+eZJyfHwk0fQ0pq3Mm/nJeid2du5AEEoIBBwKBwEB41zPgj33sY5Kkf//v/72kLmMEdJ0t3REuJUbrElpKcCiU9/IvGBHxSMq+vBSoNaihGH9hoRq7EJ8uMUZjMTBM2CGdD+67776yDUyNPmWFQRrTwfyFuOLhQ5XNISghJl6Z+GijsWIqRBmVd2nIDG21xzwGoULbBbivVK5Iu+l/Z/F7xCLEV0tplZ0Lpllj414q143rImDweDXMn7HCLi+ZsIVtiOXSlUSqcWrOT5y3r0s0c9SWNEq1RK50snYPaOaxxKJ3O+eSpJdeSqWLCFJ4Lsc6gpB0XuLMbsrD3JzKXskc27s0+yonUBEMOBAIBAbCu54BAxgajMGzzHw3P5f+R9/Y05WeSqNWkS4z3s1EGdZAJ4wL5y+UbbCIhDHty/E8r8pYKLG5zCa3La663e3zxn4IACRpKRfa06kYi0NnM8SZYT8ej9yfWSjHYSVQ+VplYaV7BpUjYz3y2pJRr+fY3k7fEZcsbN91xvmgC5mpcc3OHDlmsWPMcUk3oSmxzjxGFxcUFshUbzfj0WicGGbv7HQxzzHP0LVsZSpV8Q73qq9Coz5P6Rzcq44BEs8sIpYesUhb3eO5BVg2K6RWsi7V54JrdQtTKiquLec8StN9Q6rzRkcRhEbvdgQDDgQCgYEQL+BAIBAYCBGCyGCJRnjAQxB4w545k7T7tOb2JBrJI5J4HQ+GvBzmHFeupOWwL5kX96akGUkilnxe4rWzk0ur8tLQE4bsVxInecm+YZ7FLFVZMpKYcZ8FivH7lswku/bkxCClWZ2lf15Ws/psl+eSiTTGxzvbpGHnJGbeZmqKkEbZpCT22JYSNffaJbxBUpGwTSfJuouz2FxnXJJ0PV8380rJoSeWAB1SWtGGVEUjpSuKzRXhBcJXpTOHjYPnkHDH9luUDnI//RyIVUhilqTchgeO1Bk/c+1JOJziSmhprz37eT9ERIdzqV1fFxQXLwWCAQcCgcBgCAac8Yuf+lTn76effrr8DtPFSev1LLF0N7IlStXoFLAz2ucMAURpL2+0rmVKeP16G3Uc0w4dTkzDe4/VhFI6L6IRfkqVabb+sV5UD1PleN73jjI8yrVgRcvXqvMb10iyqHU1c5TyL5sHmFr73ZRJZ8fzMVkdsKJw2TYlf1x/LUOzlU2RUnfLwfy7UvaldA89KQmLbJ+P3Z6yPI7daQefhQ9cc1n9WHkjzLvMa97WVxRXc1khqw9n6fhKk2CESbuTH6x0T5PU9Pb2rLqK1N4YMPsdP3Y8n/NY5zhSfa6Zm1dffTV9btfxbkzMBQMOBAKBgRAM+E3gheNzmVHAPj7wwQ+ObM//9ogSLlw4X76j4B6GVjoFW2kQ7Gd3e7ezLZ0y/PcLF1P5Gl6vPl5EH7Bb4tVZG9kEAAAgAElEQVSSlQ5llkzZk48DRrLZjFWqRjQwnnvuSVLqV3JpkSSdOXtWDo+FA9hpn7cuIo+2J91172a8092vr18bTI+YdtnXOnMQt4eJery9GMvg3Vx6qtVt2tK07a3E+p3lEvtELu3zSb6hSry7YgvJ4u57ukIUL4Hk/u3JjLVTVpjZNGyWc/rqiZUMsWjG4cdhHvu6dhBDR6gz0ZZLSprMr5qtiXTv25yJJJ3NhknHjnZ7H97OCAYcCAQCAyFewIFAIDAQIgTxJvDSLJbFJNPwa0VdJUnLV9OSkCSNq5pan1TKphbNNYslKkt/lox95UKEAq5cvlI+O/fGOUnSvTkswPLvwoWLI9fB8pzrcMUT48CzYMuW07hu4T185EhqGLpqJVFXl9OcrK+9eblRmVtK5Sx5RvKLsAJJKE8aUfaF+xjLWV+6lxZCje9Ep8RrO22/lJObnhBiTFXVlT730NTFi5c6x6ad1aYlHCnZY/zFuU3S3FwK5ZRwQt7PfXhLU1Nc0PJztcc8QnguUbLdMP/pNqRTQiB2kprY65bBtW2QpDrnPteguKDlOfOkKPeIBDDj8lCIPwfvFgQDDgQCgYEQDPhNcPzYaCKAJAGeEM8++1z57o1ziYHCpjxJgU9q6/7lfsKUGcECEEs4E4e0wA69xOxa9pJgjCQ3PFlDET0spPycqmKNIo7I+3vBP6VMlKM9+WRK8L1x/o2yTfEKaMqu+pzKdhq/CAdstHQasY1aMQRdHrzzSOuCtlmSaHXOOCbbOLstfsz5OCRi6f4gSYcPpxXA2bNJoAMjdnbKsXkGfB5gs0VYk9mxlwVyHxC98FzML9TkIquN8SaZJ1UhSllJMA+2spoq3svTTEw67roJbGbTfqyanAGTmLx0Ma22Ll9O84C7mlR9Rw5nsQarhFK2qX7Hu9sdwYADgUBgIAQD/guA8hhiZSdOHC/fnT79uqTKBsatmL716iU25gyD/UrsM7Mg9wNGakvh/JTJjOcaVghzJd4rVYbU9pbzuGTrqub7wwpfeD61HUemvN3T762wGVzmOiw7fbZ8tQo4AF6ylES17mpSZbzMGRJcZ7eXsycv5VNcj68oGBsrE2dgtGqfbPq8bVhMfDv/zljvvTfF352hX7ma4vQwYKf7eDbjH7xDNxG7VoQwrYzce9MxfkrM/H4QD2a1xD10ERHnY/XWJ/ZASLOyMjOyP2VwnOP6xTQeL/ljHLDjxcV0X3zVMp+f9QcffFDvFgQDDgQCgYEQDPj7wPHjifk+/8IL5TNIC9UDdzxUu8ASI13an+KHdKS4bCKLYoJDfJhuE165TxVFjvlNGqvc02a5M1zWSkVF6QtGnzFjKogSyrYmqyWe2xrVeNaf/WBjyHP9HBtr3coOlzvD/GFq0yaHBauZRSFEYVtnfrA4BCmwbq88QVDSrlCkKndGvILc2j2DqdjYd+edkqRDh1I/PvfqvUupB9r1+9JzgWxaqp7FpdtGZsnMnTTaEYP72XZJTsfDpKh+NlE6k6TjlNWPSbL57HqzonHBS2HOCDkWqhS5XfUwryuWPyjPdV6lEPs9mHsYStJrWZ78hS98QZL0N//m3xy5xtsNwYADgUBgIMQLOBAIBAZChCB+AHhJ0pEjyQOVcrADB2tJEx4OaOZJdngIgsL0xaaBpycpSLSVhpO2dCcRs1GEINlvwcqe2uaRhBf8OPxeQh+d9uWbnWPP9iRrGPdYDpN4qRxgqVzaOFmYo3yXQwZcjyfIpnPxPscmMTVpjmkkiQj3cD2HbMnLMUsox9buXCPjOZoTsIvW4okQCAk7ltlHjx4p2xB6uZzHsXK9NuV87vlUxkhCjafBQykIckgekoD1MAMhABJ9nlTdsz89h8tZIEMIZdZCOxcvpfIx5pon1+eTUrfiFWLCGJJnNWGbzkELe6k+n8UzJV+AO+kh1jh/obbqut0RDDgQCAQGQjDgHwBIcSXp0KHEgGEmXtQPI5lU+t8fllt8gVVLukiaUBrkvqsktEozSHOSQgZa5LSlmL6WTcFoYGWUtY0byy2t0hsG2AfYuScKSbKQwCkiARMHtF7DLnn1bhJSLbWbNWcuWDbzR0LJxQGURuHTzHwcNYENslpWH86yq8dvdhjLqw+/5/gzO1NMY63H4X7uzSVnLoxhRUIC9pvf+Kak6pUrVQED88lqoc9lrs/Hl/vHT0Qf7mvcinZYNcxbOV1lrpnR59I5yUoFd9KcMZ8HbRW4upmeNcojufYrdhzuFdf8u7/3e5KkT37iEyPXersgGHAgEAgMhGDAPwA8fgUbg0V5jAw2RXwYIYH7+VKMjxS57U4g1RKtrdLtoZZ/wUzmZjJrwejGGCyxxuJLnNnymMWJETNcLHHryqZgmpOljXqXiUqV2bSS5E5R/o3uXHk5HWSc72DAzvg4PysJmLxf68UcRyQu+9B73yup9iuTqhCCk7rX79K+xMbwV2YVs39/ZXVcKzF+GPVGz6qD63DZ9T333CNJOno0da149plnJUlXzOQJ5s/5iQV7W/ip0osuxWI7Mfl8TZyf++FMvDw73A+uw2XbTSzfWT8mQKxyGAfPu2/PMc+9kUozXaADc96XmbCX892uCAYcCAQCAyEY8A+A99z/nvL7U08+JUn6xU/9vCTpq1/7WvmusCiED5dhTJUBw0KWl7vF8G5rSagVVoNoQqqsgy4GCBA6stZ8jtLXK8f4PF792GOPSZJeeeUVSdIjDz9sY+zGbIkRbvb0e5tr5MKl869qMf9OY0spSZOtUVDOjG+6Qc1ENp0Zo9PxWN5ntOLjzruSEOLRD3wgndsY/dEjiXkikLluFQqtYKEYIVn1AaZErS2mx+aJ2bJacAEEcWriy+UeWiy6PAfZTKfPBrLtzOFmPNyHnemm119HYJO+KzmCXbpeuIw9HZPnav98fWY4JtUUpcpmt8aQJ7fSsbkv5Dz8+eT82Hoi0vjd3/3dss0nP/nJkeu/lREMOBAIBAZCvIADgUBgIEQI4iahXRotWyKF4vm77kzLYYrSPRGCOxQhh+qK5v613XNyXKkuX1nW3riSju3JL5a2LLXH5kf9Vylno3yKZbVUfS4IfUwtpuWkN2+kwSOJGeA+uFwIoY+tHo/e4iewOup5QNKOMji28cTUocNJHHFPbnV+553Jm8O9HFgOM+f+3dRk9t3IS+6+ZCKJMUIqhBdcPMM96ksosXQnibmTz+GJqdrgstuw00NTa8VzOX03PVHPRWKSBBlJxG6iriuwYT7xvXZwLheLlBBMnj+Svd7tgvAVYpGlpsmnVMNU/Lu4kBvK7jX/jm98M5Xq3XFH6spyqzfwDAYcCAQCAyEY8A8J7qxFpwQ6KMCYvBge1oOkGRbhMmEYQtvDS6pOWjea71yW6oxZkvbuScziFSv8h9lQGuUdC+hlx7gnMpP3JBzld63jmiePGP98/rlh7BjhCNvDHNc6nT0SayKJB5s7drz6M9+VHcoQXiBNdiZKIojj9DmvsT1JQZdWw0KZM/JJ7mZWGGtOorlIgx2eeOIJSdKrr70mqZuEo2QR6TDHc5bNGHmGvByPFRGJtVLmZyILWP7c+HzeZqxzbqkmUzmX309WTWw/1UijJWl6prsCIPnGSsfHxjyu5Wu8M99LqQqTSAq645p7Z98qCAYcCAQCAyEY8A8Jd+fYoyRdzL2ynn4qlardeVf6H93/90c4AHvqYxqwkO0biXG52UkRcmT2s5hFBi4ThikeP3FCUo2lXrhwvmxDUT9GOxs98VnYGMy3ryPGVOkmnPZBiivVmDFsd7tHOACrYj+XS8PAiWsSI/S4ZvXG7XZedkk0c9wyacn6s211JdUTxtbbkj+29XtWeuztps+c3dJFhQ4jXLvvD5ssXbN7Sv5KzBhBibF0WP1Mw0C7LHumc43Iwd1Luowpz2cnTl0MpNJ5uT8diXpeARzIMWjm3Jn8wUO1h5zUL0ZiJcJ97OQWbkEEAw4EAoGBcGv/9/EOxgMPPFB+pzLg61//hqSaXT5yuBq7bDRsEHa11cN4YA+ekS/xv81uB4VtiwcSP6PA/czp0yPHLl2E8347xgq5DuKpCDI642hYZR8D26K/Guzai/GzWUwrOPBYNvLcSeKhjQWnVOOHr76aBCXM733331+2KSuQfP5uB+n0E+JdxAk2Jlg2EvH1ngoBwLxgCylJ3/hGeh4QvQDvlk3ni9ndxFhhjH6OYrSTnwFnt7B62Ozi3rSi8BgwLHJznh576afnDNqVjZ+fa9teSeeiysZZMhUSzCOVGp4rYaxVhp4reuy+zM528ycep758Ja0Cb6XKiGDAgUAgMBDiBRwIBAIDIUIQbwNY/j388EOSpP0HkgeENzYkaXfu3LnOvi5EKEtT8iFWokYJzp6mDbx3PiBZdTW3Sn8jO1Kx5JRq6IJlnzud1TGlUESbEJHq0pTk2Uxennoyj/AAS86uj+9EHvdsZ5s+rOYxEu5YWtpXvjuYG2ReuZyu9cknnxzZ/73ZIY1QhPsSsPymrO6tPBi4fpbOnnwqXgx56f31rz9Wvnv88VR+1nbtcCe9iblu8qsvCdeGPGZ7yulYqvPTRSsTjUiDc7mYhjLAqeJ2V+85wiJCBnvys+jeGswx5WOMGS9kqYZQ+DnV+EZIdR45njvP9YV+3ukIBhwIBAIDIRjw2wBYC10zKMb3tt/8j07xOmVlzgALw6Jrhf+Pn3NcfEeCzEvdYKGXsxsb7lVezN4mQGqRUE32kHShfMmdzmAtsKjl73xdUjehM/Pe5Ew2l6XQLqstbmiZBa08nqSnc498qF7qNJLX1bxP7gk3UR9nElunXjqVriOXil21JBilbvfee68k655h17ab80htGZZU55/zk0Cd7il1e+HFVGr27LPPjJyfBONOTuZ5YurggcTkWf3All1QMtZo1D1hyXBJ3m3k+8DqxY+NlJkVm7PclXw/WHXsmj8zHTjKfcjbunjGO7NIda5d/DKfnwfOX6TZtg3yZuTTrs8n0fdKTrwi/X8nIxhwIBAIDIRgwG8DPvDoo5KkZ59NHQ+gJbvGHGE0mMh46Q0gtsZ3i/uquAEWSTyurzsCDBbmhUDE/WuJATMeZ9DIo2GDMPnxU8/aOBIz2c4siPIz7203t5IY+NpFBAw1Hum939L+XQmuVMUQd2SJKrFfZ8BcK3Lr5SI7rmz7W9/6liTpuedSd+K7c4cKSbr//vskVcYFG/RVB3MFc+P8fj0wceK9Z86cUQtYKvu5PzM96LgeZO0eC+ZeIYRwz2IIIrmEK1fSvaefnSTNTXRNmZhzl1SXvm+U7JmAAsYLq+U6nKXzXJ49e7ZzbO9CwnPI+VmxdVYm+XliteECnanmWTmfBUaHD9UuKO80BAMOBAKBgRAv4EAgEBgIEYJ4G/Hggw9Kkk6dOiWpmzwpirGc/Nk+Oeo/S5kSpTceHmD5iZsaZVzns8eEVBN7ly+ln6srqyPHIbFFuAOfYj9mUeudSdcxZeEF1r+UFx3OS+i+5ouEUrqNQ9P5i5IOTwxrAskylHIrki+d8MBYf9skL42iMeSLL70oSXr+hRfKdy+99JIk6e67UyKHsIC7mZUSs52uG5r7G7yU7/Xrr7+Wv7NkFKVlm10l297F6n+LHzP3npKxvgRuUeZ5SGeuG17g2fE5r1693RCTKzXbMMnCnuo8RhKW0AGlYjxfUg0V4LJHqd26lUBS3sizfOhgCseRHPSxAZSCUg0X8azt7r7zX2/BgAOBQGAgvPP/i7gNgYBizLIlkGHKgyiK79P8r+aNncVwAEp4SFQtmOafNu6wU9iEM2DYEAzLE1tTrz7fOfZi9pTwxNliPjbJo9Kq3cZaWqvv4FFbVwLXc7KmbI/D17drk9PrmQVey+dl/627qv8GlI2yKQQhXvh/8GCa4+JlYHP94ouJFTNHiGamX3uxbHMps8mzeaxtZwlJev315Hh2eid38Wg8maXKIPdl8cqxY9XXmLHhy3zk6BG/PEl1tcIq6jXzdwYkbGGePkYYuwtR/JqlWp7Itt74E3bLiob70XExy0z+ePZsJilISaRUxSE8T9yPq9ZdBg8L7qevFvDA5jPvcPJORTDgQCAQGAjBgAfAvfekwn9iwVJ11OJ/8cISexgwpU1eKH/s+LHO9rAP7+mGR/AR4nCZcbh0lvjZ1lZiMZOZ9UrS/sxqFxsG7T3hkCBT/oZwoNPDjGL+HpnxXFOGxrZe0gR7Q6LKsXcWr9TjEPvM17ZeHMPqI0+HkgNZ7LBh7JR4KIIQxrrnA3+pbLMvX/+5XFq1mpnatetVOnvp8cclSWP70/3xmH5p355/MmaYuVRjxqxScLJzAQIxUp6h6ybdhT3iwLczk86PMEWq958SwtIP0Lx26ds3WXyey1flmeVZ45x+rTwXJYbNOU2iTnye5xrW3+1/l/sR5pXids8zhAgJ57d3MoIBBwKBwEAIBjwgnN0iB4WMwhScatD37fSZ5OO7tK8WqBNHLLLS3cp8weVcBYHBDgzWRR8UzGMYtGQF+7Avj6O2WMksBsOdwlC8M0f+CQtas6oB4qiFXWdWuOVzlbcng75913vSvmZcxHXsNPHmS5dGM+qcg/51UjUu4idZfxdJsB8ikzfeSIX/LzxfVw1j9yYDps3zqeLCY6e7Oc4Ou2eF8lZ+wjBy7wRR5ngs7XcAltyDNs7rx2Q+6Ijhqw7YKbkBF++wH9UP5A3GJsdGt8n781gjPJLsfuIXnVct3juRueZ5d7nzMrmAza5hkecfDr7F3AyBYMCBQCAwEOIFHAgEAgMhQhADorMc3ez2wPGWRi0+/OEPv+l333v8e5LqUg8/XEl6rREDjPeUC03nJBhF7QsbJrLIWDafWKnrC1A8cse6xfnezHIshxnY1svQSMAQlmCpvWPLcpy1cOTaej75LEy+55GyDQkgwhwkF6dMEEISEnGCiwsIR5SmmHnJ7d4FlH8hzjiRS6xumDjg+RyOKCIHu+cs2SmXonW7Cxjqtog20tx13NBoDbWT3czMPYwwCWEmwgvetojw0N6c6CPMsscENiUcsLzWGbtfP2GBEtIxV7baJFWd8XvjT545BEOlrM3mbPlqevZI6nmzV7yOedbKsRu3uHcSggEHAoHAQAgG/Dbi1aZA3p2c+F/bmc33AxIgMA4vdbt2LSVSCivKLHPTkhQkaSgl2r1UC+Vhp63/rHcsoEQMVl0aRVp5GfLg/dnlyp29LmbpNCwXxueJlCoHziV7h092zilJ05n9jDVNLDet7AkwD74/LJDSKpy5YGDpHOleMeew9cMm4d2Xr7Ft7ilVUYQn/3w8knQtrzYQWXBOf04QLuxM5BXBeJ1PWD0smbF6Ko57hgy+djqp49ppkncuyebaikgij/W6+Uy328L6PZnI+RGkLF9bftNzcT9d9s0zy3OF6OXkiZMj43inIBhwIBAIDIRgwG8j7sz+tTDhTilR/h/97rtujos/MVBnfKVXGH7EPVJg5KBIeKeP31O+G3s5+f7C3GFF231dO2BMpci/sjJKmmCcLiiZN+m0VIUcHtckJkgJ0uKFVJa3lcvRpNrnbrq55kmLARev3Fzw7+VfjJF7NP16MufZdEFIFnAc+fGf7myLP7AkHc3SYRifCw8YSzWPSZ9794jXT5/ujPVoT8v1vXncMNB9Nlf7lEoGYfCINFatZA9hztEj6Sde0sS4JWniWDrvSi7L82emFUcwWH8uMFAq93xstMxy7cZa57PSGcOMh+r+aZuPf/zjupURDDgQCAQGQjDgAQAT/mHg4YcfliQ9+VTqArxoWWK63JL1RwLrsc/SPbfpPCBJW8dS52bYFJUKW69/r2yDfeVc7nhA1YHHLNvOHG4GVIx+8rhhYzeMsZEdJ3YN85w7/3rZhj536yfv65zTY7ATE924OzaIUmXAsO2x3D9vzhg63G36sa9Iqix95uEfKdscPpzsQYkpv2Fdr5l3znspnwNpr18rLHBqKsXkF82EZryxqPTuI+xfGehS3r8+F/fdd19nHjDuoZuIf9fGtKXKXLGGZCWxZ+FE2ab0z0P0kcd8wexSV1gl5WeulS9LNUfxC7/wC7odEAw4EAgEBkK8gAOBQGAgRAjiNoUvYwHLUZI+M3np78knSo9I4nnHgRtZTFBEEtlZbOye95ZtrtFi/VxKNJb28hZCmCSR0uNFwXKa5Nl8Tur1lecVH2CWrrYuLqVZr6YuFzu5JKnjwPbgo53juYcAJVGEOVgqL5oPBp60G7mcjMTW7Lf+rGyzNzt54YPb8b/d7nY9QTTjYpGRDhgkE62tPIIHknglmaXqr8DUlOavB4+WbQiP0LiUckWfc+415/CywJpMTT+v5/09zEGYibI+knDXrENJn4+w1PUe+ehHP6rbCcGAA4FAYCAEA75NAWPxsq7q9ZuYHgk2LxGjDI0EnTOtmcarl228UJ5zbOdc03bxhK2MHKcyPzYobm6lxTtihcoV5hpWzDV6adRWI1goiTsrA9t86Zk0srsfyNdRr8/lr+k6Rgv/SdSRPGvbqUu1lOt49mv2bhWXryTJLQyWMfa5oVHiVTpAeDeVnA7EF3jZhDEbJVHZ9Qxe21Ovg1UO94XebNdMck6HE8bWytGlWno4hUDFvJe5Ny279pbzzGcRzeSx326s1xEMOBAIBAZCMODbFDCmPedfK5/tyUX0586lDg4bJT5YmSPMD4aya2VbeOuON8XwU8Z0trMxzm7TZaEvZtjG+hK6nYI5p/vYwqJm6SDddAGRKitmrMRVu2KLLMA4c2pkFDtNp4X1HN9cs67GV65czWNN10gsdcEEDEQ456+nJcGxY1VIUTx2meM8fF+R8B3x1c0m3izVUj3uo3d+hkWONeIZlwlfvJji0sTHW09mSTqby+eQlHtHDYQsxHeZB5eotz7CPF9e1ke8n/N6fPh2RTDgQCAQGAjBgG8T/Mmf/Imkyh7IHJMFl6SVlcTelpcTM0GQgUWh73/pG1+X1GVjxDhLrDRvW7lQDU0Sc4RxeaVDYVaN5NSPjbhivGHkUmWnHLMvHglDhGFReeHCkukiTsBOsQIWuFuqDtJ43CgHVreS7SNZPThbZ/5mszjj8JVqD3o+V1YsL1/tzIOz9FbccOVq2t+tHonN073DJcQbmfnDeInzeiybueK+jJWVjcf/u/Ft7DWlGre/dik9V5cvpdi2y77b7iPI4n2bYjSEWCPP+e/9/u+VbT7x8U/odkIw4EAgEBgI8QIOBAKBgRAhiNsEbSkTS2YacErS1lZaGpei+P1L+fO65L3x5GOSqhCCxJ1UhQdtksTLlYpn8P2PdM518uobZZvir5D/9vAC7eP5rC0Hk+pDy/IeP+G+BBuikdJe3puDNuEFL9nzpbFv03GOK45zacylHbydg3DJep4jL+VDnEE4oHVgk2rybaRRpYkt+IyfHoKgFIzQAefykBAJtX25ySvho/Fx71SSPiNR517WhBVwfCteIzYPbM8YuZ5Zc27jOz7jOXMx0G//9m9Lkn7pl35JtwOCAQcCgcBACAZ8m2D9qe9IksbuS25oJRn3Iz9etjn+8ilJ0rWchIPdThvbW93sevVOvOd95bvJ1ZQsms1OZ9/+H99On49V9y1cyO6+lhJMu8upVft1Y0MkCA8eOtQ5l1RZIOVTfZ7BsFDYNf65V42Jr+TjwO5bNy6pynxh0l42xfkmGtn0upXTlY4WefXB/r4NfdY283fT7tWbpbqUbV3OCTo6OUjW4r2TIqzMXqpOcZSIuasb5Yh8R7+6G5cqA2ZuYLAw6KnJ0bkCvjKBHY+NZZae2bYncIuvcp5/2K732DuY/ZVL4jbfQ+/VR1L193//9yWFH3AgEAgEvk8EA76F8bn/8Lny+8Z8it+d6ImZgv2XUzH9dGZMLz1/Kv3tJV7beNTm+OpXvlG+YzuEBoePJK9bYplSZYEw2fuOJZbtvq+l39xuNyYt1TjzVFOGNm4suY0ds79LiS9Pd+ORoEqjKxCbbJoZz9bWRrON8jbdz9MYu/HNlZ5eaDOZlbqAYX4usblDeSVAOd2FixfUAtk3bNO7ZiCSKJ2GjWUjfCgdMfJ9cWGMmvjsbmaZXrLH/sSA3Z+Z7SjLK2Pri4UTk59GFl+f19NnzkiqbHv//v3554GyDd/B8v/zH/zn8t3P/Y2f062GYMCBQCAwEOIFHAgEAgMhQhC3IB57LJWKueafUiCSHThabT37eNmGJeqzr6dkDyEAb0uPr8BHPvoBSd3kz/e+lloPreUlJqVdU3M1hHHgYEqkkOw6fTUtOe+9446yDWVrHGfL/Yhz6KP1YnBVVikpy38zQtoh+Tatw5aXqqF2Y8lM2x4/f12qjzb1LM1N88+yzLbwAC2Ilk5ey2M1x7acIDyU5+xkniNX26024YzSAt5Kzbims2fP5uPWUMqevd1EJT4a7iUBCPuQhPNmmKOhnPod5YiEJ3BD69zXPEcTucQNb2lPwB7K7ZsOHkwhh8W9KUm5z3yFW2WlNzlFMXcrqeWCAQcCgcBACAZ8C+H5F56XVJnsieO16eH+AylhsTCf2AuJnK07a6v2l776TUmVdRRHKktefeSvfkRSTRA50/nozyRfVpgebI6EilTZ19OPJa9dGNwrF6oHwoMnD3eO7SVVsNLVpvGmJwpr4X9XXOEih9pgMrFimJJ35uA66NzgpW4k0lp264m6sfGuw1hp8unigswcz3/ty+lcH/xI+Y7yNVg6JVoHcvJJsq4ZuImNd53oJGkzf7d8Lc2ZM2jYLMk/nMt2OgmyfB/yWIuYxtg6rmx07/AEHasu5ngjl9F5hxFQEoX5Xi1ZtwvK8SiHY8znLYG71TSE9Xvm/hi3Cm69EQcCgcBtgmDA71B897vfldTtKkBh/ORrqc/ZIYsBz5w8KamyW+KLGxfPjhzbY4SS9GM//WPld9gljMeZzkTx1s1sNLOovm0+mGPIT37jybSNMRynr5EAACAASURBVOkXzqZ46HuOJ+bp5WOwWhjnVeK0FqdGiNH6AI/ZNjsNyy/SZmOOO83+zrKZIxgWMUfvdlFEEkXSTDyzMmAczpCEe8wTIcf5lSRWoQ373k7MM80DsVuOg7OdA8bqcw2LxBVvZ2SsUjEizljpiQ8Xx7S837bJ10sHi0aA4Suj1gFvMXf2cO/klRVK5Lr3DHc1qTJfnhlEQZI0vtvnL/3ORjDgQCAQGAjBgN9GvPjSS5JqtrgjgMjMBG9YmBcsS5JWHk8xXGKGzuY2vpv8e2EIq3kb2KZUTU7o+wZT8S4PMJWdnT6mlFCkq5Ow1cqG6Ma82TBX79FMRp5Ypc/DTI4nco7CPI3dlhglXR7obWfsdHyEJafjejUFLIp5WO85R7kPdJLeGY2dqolBT9oKo8Snc4XFDTcMyqwSVo2IxbsA791TzZCkyoDd6AYTobJqsXOU56eS8nRd9uwQOy2ew5cT43TRSZFkZ2GHd6D2Y0leDVL3J749PZM9pG+sqQXHhsnzbwHhjlRFNwsTWS49Zc+OVbHcKggGHAgEAgMhXsCBQCAwEMZ2tzZ3//83C/wgePHFF3s/94QMy1ASESzLfYl19bGvSKraf19qsgzEw+H501fz/i5g6EacWMXuuuafJo556f3Bj36wfIezF2VW7hcLGNN3v5pEG2zhDxmeB4QXHjhZW5PvlLKrHFbI1+PCgd1GAAHczxdBCUvfVnTh4FxeDsd5ERMQtvFQyHrje1s8c3dHPRS4Vvfh5Xd8hJm7/VaGduSjfzkdOy/Pz5/P7nIm0OA52i7+yDUUw3IeLwmepynzHMZ9rW2YOTk1GqEkrODuaIRy8KDwkBIo85afU8IsXgJZnue8Dedwf+S9OXnH/rOzc+W7T37i1hFggGDAgUAgMBAiCfdDwnPPP19+L4wiJ7RgA205mFTLwChf2rRt2nbhzsY2MntgP87pCRLa0MMb2caL8kuCrTSYrGyOJNFEZqMkb5zJw7DK+fNxnHFxjSRXXj5f2dydB2Y6+8FqO6uFZv76mki2DR5hVX0NM9t9pMq6+sQi9Vq7JXOlHM/OMZZZJQnCbTsHKw/EKqWBqM3V5W/+WWdsYyfvldRloK23rgsouEd8NtEkMKU6twyb5OiYLRbeKglXJeVbne/8nk00XUc4v8vpSXTCiilRc4ENx5ydSZ/diqzXEQw4EAgEBkIw4B8S/H9/WCglWkVOOl63gQ3t5GJy2IAzr6tXU+y0r58W28P4HjqRZMpPZCGE78d4YIAeA4bVTTadCzrX1PjHOnN89jvP5Qva7Xzn80GLeGKHK8aCWsDO9+7dO/Jd2wvNVwuwyt3Mtkv/OCtV2yk+tllabaxyJl//VhOTnrJrhQNWBro5cg6IYl+PO+aEuaZkrG/VQbx5+8nUhWTbzqE8xt077k8/LeLO2fiM4/SZCjFHfOerFkQVjNGvsXgc7051judg1bOY72ORdluZY+nCUkohR1cUPPOf/OQnR85xKyIYcCAQCAyEYMA/JDgrhHmOkYnOzKITe+V3Og6QITd2SLa6xPjMfKRkkDN7efGJJPrwGPBUZpxUL3BKr6YAsJCXnnypfPbQh1K/uZeeeLGzn5vPcFCy9HM9zJGrLvPizDMfi88wf/G5wiiIePPWVjL6cSHGZsOOR+K0qsyfc/mKosib8/yNZQbnzA82ybGJL/t8MmxWFp14edMnDUGMPzuHs0Uj1QfXri13rs+POXfmVDr/3Q+qBWOCCbvIAtl6Wa3k+VjrqRhZ3x2tgsAAivmAESOWcBAnRsTTiRMXqXv6bnFfkmR7xxT2++KXviRJ+tjP/uzIOW4lBAMOBAKBgRAv4EAgEBgIIcR4G/DyK690/vZlFyh+r2Nd961XXn21bLOcy7ZmTqewgC91WWqfOp9LxFg621KRpd1Yk4TbtuQVn1H648mv4tWby9A4njeB3Gq2mc76fPc02CiiiLRUvf9Ydf9iGU8iqIgLzFt2dnamM9ZLly5J6oocWh/f4qDWE4LgGl3I0QpBmF8XchRntOZcXt62kR3PiAR5qRzzuZwTbSQOfcmN0GAriysQsVwxfwRAKOPG8bvLZ4QuWr8GT9SVpG4+13TTTcSBOMPvJ+MlREaYwF3dKCvk2Mz5hCX6uB+TZZvs+zC/MHIcxr9lrmx/6+d/fmS873QEAw4EAoGBEEm4twEkLHCr4n96ZyEka8YmYK7Z6ct7mFEm1JO8gjXAQEtiyYrYW4ZWpavW5SH/pJPDBSuDa5dK202JVrqO3c4xaxmX7d2UPTkrhSGRaOyVtSJqaM6/3TNXXCNMq1MON9l9/L3kr4gLaMfejNk/a8vzxv168goA/1wfI+OGndZOH56w7J5jaSnJtheMJVPGh7AFn2FHSXjmc3nidHYmPSutTHvRGCwowg5j1Kw8GH9xLLMx8sxzX0jS+v1tBUs8Az7nPOf8m/pbPx9CjEAgEAh8HwgG/Dbgjtzt9uy53LU2xzMpsZJUpbI7GM2kj+fmq9nItespVkhX4wWLWd73/lSE//6jxyRJLzyeSsWcYbSmLcQ1nRW2sVMv/yoxuiIrncv7m2dxZjYwpMnmnJL0nhPV71YajU9KtUwK5rbR0xGjZVzOyjZLf7K6n9SNwXJlV3Nc1QUpbdeNen9Gu3+08HHAcMboJOEGSo3XcBXoeNcOStx2OuPoyI3zcYpEe3vLvuuW04FOyV4TT+Wed3yJ9+6RY3p6xn7vyr5Zdfmzwz2ezz8vZc9hZ90ns3hoad9SZ/8+qXzPI3NLIhhwIBAIDIRgwG8jjmV2+vrp19MHO/W/cZgV/KjKhUd7bxXDHovvvvJMqrSAOXrsF2w28UyO56zM48pSV45KjLR0sshxxE58NwNRA+zFmePTr1xMx+6RKd97NDGtUsXR/JS6LNbH4bQIoQKVDa1s2a+jr/NyEYvYuCXJiVe5trcw9SF+SZzUzYBgp5jPUOnhHUbKufIcb21nubPFeTl2MQd69YW63z1JlEEMHLMmZ5VYoDJ9+3Lsd9EqYPZkBowIptOLbbwxhyI27jmKya7MmHOMGdvHQnSyCJW6cy9VKfSt2AG5D7fHVQQCgcAtiHgBBwKBwECIEMQAOHkitZA/ffp0+YxyI8IBrTeqVEMPJFCuWSLlkQ+/T5L0zLefSftPdv1fpRpCKJ6/2eFqYruGAN7zgQe657LuCo9//Yk01sZFrM/9ilDGOGVp3igyLzFZlvbsXrbBT9fLpoo/RLNU95K91t+iLylHYnB8fJSHEJZgrrkfPtTir5yXylNNEqozthKmqUfg+sfHEch0k2l+jcVVrSnDSteWQyh5jm5Y95DL25QedsNNHbe+8W4ysU0Opmvrurl5ApmwQEnylqato25qCI2W9qdEmycTuUZ8kXn2vRsKoZO2u8utimDAgUAgMBBuj/9GblFcuXql/I60k+QKLGJPjw/uEznpcufByrQe//rjkmoCqLh2eScKkj1bOFLlVu2WNKLvG3TEGfhf/thPS5Je+N4LnXOsGEPp67kmVUYtVYbF/iTeJEtGUvJGy/QeuXR1c9vqfJ4+2+6cg0RVn5CC8fh37nomVXbtbHmC0rKmsUmf2AL5tIs/OBbbTExmYcaWl5ixEuh29IAtSzV5xbPj54DFrpfVD9czmuBqO5z4cWDcJXFrc1V6yo13Sw498bqwJ40RBsxcw4ylKoWG3ZJk9nGsIvroWWXciggGHAgEAgMhGPCAeOThR8rvp06dklTLpmBsGM1I0sWLqXzrjtw3DUGGVH1jp1oTm56+c5R4Ien1bfisxBonR2OFiD6IPX77z75dtmnlua0fr1Rjn8RXn375QvnuwTsOSDIZ6vaoGQ8gPtrn9bvVlNiVCKz3a2v6o2Fc459RvrXTEzst5WYEL9+kW7Nv6+V0fVLu0WvsHqvs0yOQgYmuWwy5lXJzemfApWNyNtFhRXMliyUcG/kcq6vV+IiSw9m8yuHvORMKwXxbSfhuj8iC2Pri3twXcLGuAtsOzLc6ggEHAoHAQIgXcCAQCAyECEG8Q3DujTckVYUQSy1vC7P8na9JslI1S06MNctgwgq+ZGaTjSbB5Ns8951nJUnvy2VtDsqtOA7Lyvf/pUfLNk9/6ylJNXTAGDvlX81yfsdCIM+fTmGVR+8/LklavZGWw+vmVFYah1Kqhkes+QG3rnB4UnjNW7sM9nBL2YZyuh5FHufnXnGcjm/FeDex1edZzHzcWEUtN+oR0p7T7yHhCFRu7vOwvtVV1xXXPTssoQdCODs5tHTlSg1xUQpGiMx9fAmhrDVqP/dX5roplcNnYtpK3VC+EV7Ae9jDKCjxWsXmrYrb4yoCgUDgFkQw4HcIXnvtNUnSpewwdmB/SkZ588X59/+oJGn18W9Jkh65u5ZvXbiRy4SahI6zseKz2jh7ufvWdknojPojANjcTC6tcjZUvBeaFu3u39A6nLmAYqNJnnH+rc1Rj9udhkG+ldfvRGapfaVqMDZvytk22hxvmKwkjbcMmnmx49SysVF/Y1h17dqRPnc/4KnSsDOtAEqZnzP5hqW7gILyv9nddP1tyVg6f57zja4wZafHHY57vbbmTD79XGxKJn2uYdDFE4NuJOY5fOTIkc6Yi2vgtI1jKo3t7rvu0u2AYMCBQCAwEIIBv0NwPfcFg4VdziVAHgOeP/uyJGkms2OX4t53X/IcPvXUqfzdaH+yyUl8Z9P/u7ASd9aiGB9J84989IPlu4XZbpvxyiArQ3nPo+9Jx8wS5uezaGPSmCPF9MR1++J5XBtszp3ftpqOGOX6jPnNwwqJM/f4CsPO275x7e9SnTMXYrBaKMKFpgTQj912v5AqS4dV1lVC3aava4jUjQFP9DDWco5Xn5ckrZ+4Nx2nZx7woOZ5qH7PNYbLasfb2QO8ghGEzGcG6x1fYL6sDjh/ew+luhIoPep8FdanW7+FEQw4EAgEBkIw4AHxB3/wB+X30i8us4YbTz4mqRtPHG96Zk2YJ+puZi0wLJjaTE9cs1ZRZOZmHS1gG3TEvWHVB96dQ/IYrosscmXATGKsj37k/ZKkJ77x5Mj1I4F2TgP3e/506m/2wMmlkXNw3tJJgmt26Wy+7rYbsrMpvuN4LgqAjcJAW7YsVebJNSPt7ngGN51FXECxmVc3uz0MHGzTEaPE67sewpKx4bz/noW6Ulk9mmKl53KOgfvZ8VfO4yb22lZupHF04+zHjh0v39GRhG1YoXQrcLpSaqp08CKWpLNnz0iSTp5Mq7kjh1NM2Fc2XkVyOyAYcCAQCAyEeAEHAoHAQIgQxIC4+u2vlt+naZR5MS3DWLp6SVJpm56Xc96U86UnUhPOqaZszJ3KWCK+P4ssXnzyJUld5y9CD32JsZXrqeFmn38uIJQy2bh4dUqa8k/CI77036AdfJ4PXL+8Bc1IG/qeBFnrTUuYYsLboBf/3rl83J5WQCyZe1oaMeo2CefjoEkpc9xp2EnyrGmE2m1b1J3r4rVrfrhc0XYeB23qJenylZTMRRjD+b3kjrktSbe8zfK15bLNwnYKa+A54gKKqcbfmfCIe0GQcGUeCHcsLNRSShwBOTZj9cTl7VJ+BoIBBwKBwEAIBjwAvvR//1+SpIMHD5bPruUyNFghHQzW19fUoiQ3Dh6uH5673t2oJ6EDs/rOV7+b/iYx9RbOUjBrqZZLPfQj75XUX0I0PdN1/eKc9z5yT9nme1/7niQvixtlhXDAp14+L6mbvDq5lJtPNomhVnzh+xU/X08s5d9hg349JImmexJSAFEESaeRTiEaTfD1iTQK80XSu1ZLD0nC1Y4Uo65w7bn8GqdfT6uc2UMnO9v649G6upVVg4k1WBntW0pJ0U3rlEJibP+B/ZIqu127Mfrs7t+ftqGp54y1t+e7NgHqjTtvNwQDDgQCgYEQDPhtxGf/3b+TJO3fQZ5av2tbzvO3x3A3F5OBCWU/3k0AhlZjp6NxYlgMcVaYr7O7tpi/r+z9ue8+J0l6fy4x833wr53KktHaiaKyy/dmBv30Y890xuzHgh3uFq/eygqfXk6xyYfuqiuI9jpawQFT3VfqBdvd6jG42Wo8k31vGHeJ8/YZIFEO2BMfRmQz1fSb6+sqAhslTt2JRecdiZ2uWcne3CM/IklaPntOUp0XOlRIo6Vd9VnaHvmM85IPkKTNmWy8ZHHhdF013t4nqJG6+YfS6STPRIlbb92+PPH2vbJAIBB4hyMY8NuIGquEzVSmQvUCDIWKh619+8s2GzkeDOM58+LZ8h3MuWTtm15o6RyZhbW9v0yIUXqpIYG1hmewv53M4p79drKuvPeRe8s2mL3AsmF8nnWH+T38ow9Lkp777rP1uzZs2JjZSJVVvnAmMeH33XskX7P3jcty5aYjiDP6nby6KGzbhRj01qM7cmMO5Gg/81gyY0UssWb3g3vcxqmdeSL95V4xD84ukYIvL6c8wo0bddWkpvfbZo+Me7sxQMLy0Zl825G7K9BJ21+9msQzVDws7d8/sj8VDbBbjYbWy/MI2773nntHN7pNEAw4EAgEBkK8gAOBQGAgRAjibcRDDz0kSbr8zdRo05snUry+lovRV7IAYc4K7hcXU9nZ4t7koXr9fC09K2VfZRmbvVRtqckKm4QOjS9dvDGJty2lVTb+4siVj3khNwndd3mpbMNynOUj1+UJQ0BJ1kMferh89p2vfKf3OJ1mmvln6zTWEXQQOqD9eY9T2UYpt8rNOS1BxmhZhrONh2tWG0evPtHJdrNkX12pySvmcyRc485vW3h74P/RFZhI3pkDpzErY+N6mvCTl4itrKSQxXRJBqZ5dH9fkmeM1f2A8XOgpIwQE01kJenwoUNpm5luuKYTbmmScO998L263REMOBAIBAZCMOC3Af/tj/9YUu2xNZMTMc6GYBg7jWvX/qWayCi90DIr9qJ+km2lk8TUKONsXapalun7vxXTgqnBdJ78xhNlG0rTWqewMSvgmm4Sjl//k6+X73ab6ydp05FY5/GSxHoqt7X3Mqjji13mCjd2X12EJTOcy7tdIF3mmCSPrGyqtIPP89AyYal67F7P99rvC2OjPJDklc/5TI9IROomyEhocTyfq8Ly84pqY3vUh3euafXe3h+pPl9TPfeT5BsOeHsyc3a2S6KxbJvl3/usI0bpENIkDm9nBAMOBAKBgRAM+IeEM2fOlN8vXUqxsNdee12SdGw1lU85YyO2uJVZTBES9PRC+7M/+oqkrpS57aZMwNdFDjAt2AjM18/Rynm3vAxtu9vXjJ93P1QNUmB8h7OXK4xpOUutJetB1iNlbov5S7+5HnHCVLOtF/U/93o630N3H3rTc7Xs2reB3U835Wh9q4W2a8Vkj7CF2PN2j5HR7MNJLLGe2eH1F58q37EyYrfSKWRyVHTCiqAjrHkh+TBvZSlyfc6cZadrpLSNDhmbO3U+S/cPul6YwKfE0JvO3B7fvZGfi7a3nt9DYr/vf//79W5BMOBAIBAYCMGAf0i4bvHdkycS+8DpX5nhvPLqq2WbhYXEKFYy45vOGWVnOmDfviRJvn79+sh3yJRLvLbHRAamslWqBywuigwVCa71iys9z2B6ZazeZaLboXetJ2uOCQ/bTnkni/z7biMo2exhnlQtIJLwKgiOU4xy8nc+1nYl0HcOqkiI87pMuK3QKGfv6axRWOL9teKDOOh4PiZxVu+6tlPMePL10KHDBSZUruRr9nsGA4dJM9ed3ngbXXEGP6m2SWOd7b0eqc7j3vzs8Qxes1UPcebFvFLjWv06fuonf0rvNgQDDgQCgYEQL+BAIBAYCBGC+CHh2nLtJoDPKcu+1bwMXXu2eiBczdvP7klLtCoAsHKjvFxjOUf7b6kmuShl2ptLgVxc0IYjKCSasG0orSLM4AIKCu05zt3vTcm3nZ4ODqWoPh+H5baPn9DBQz9al+V4BuC4tj5iDjEqeOAcfS5km00IYs7mrCQce1qdt45kG03pm1RDDszj1taoV2/1RU5/u4cDS/W21fuanfva9XRf8Wdg207Hknzw7Z6Q0k4zN9wXT3a2pYfcK1rRSzUcsZb9SNxjhJAY+5Mo9OeqnRv8gPva3L+bEAw4EAgEBkIw4B8Szp6tTmW4Qr36yiuSKitZ2FP7YbVdCV566pQk6X25f5skvfZsStoVma+xOZIk3uZb6vbTYhtKojYyc5o3QcdWj6ctaNufP/+959M+Vqo2kcucHvjAA5Iqy/TyNjocjO3ka8296XyMpUxpmk4QlStQ0rRmXslSNzG0ledofX1sZP86jixOQFJsLA3mzHzAiD151bZj38jJrGkTIEyVvnN5jnvk0nxURDQ9jmslaZUZ42ZP6eBUIxqRqrji2lPfliQtPPpjneNIVRA0nztaIKhwsQUrCJi4j5HzFz9fknImsiD5h7/1oVxC+alf+NTItb6bEAw4EAgEBkIw4JuM81/775KkozeulM+++MX/Kkk6vi9NN6U49NeSpJnMOr792FN5mxRXez7HQqXKLGbxZjXhAAxjz55u7LfPxIb432pmVW4egyyXY/t3rTHNRin/qtfPOYjhcrz73ndfvY5c6E+JnbN0zF6IVXIuZ1wwthJXzAPw42B+M764t3Mcj+0Sn+V4LsQo/dXoaDFLzLKy5PFGbs3+LhHnd861fuqZOsZ7H5IDmfLKyep/u/vqC+kcPdJy0IpMXIo8/d4PpLHm7siUnK2vVwZcZd9IzNPc7bEVGuNnHvx+sOraynMD8/VtZpu+g33CmHcjggEHAoHAQIgXcCAQCAyECEHcZBz+yE9Lkr785f+zfHZwLifdso6eMiNv6/LMa3mJmJdxLIE9ecWSF78Fd92iJK1NnnnpGd+1CSU/R1F+ZU9ZDy+0y0gShE8/9nT57D2PvkdSTdBt9pRmqWmMef+j95ffn/1OCl1sN+o2X7JuNcvXooizcz14cqlzbUXBZfOx1pS49S2LmeM6nhqSuXYt++DmpBthgqkex7PS6sm9PVC1NS517gZ2/vx5SbWskCRlJ6mZx4jyzJORYwdWO+cn9ND68kpVvUnowZ8lErDTJCV7QlNty62Oc1w+H6G1Pre+dyOCAQcCgcBACAZ8k/HVr31NUreTBMzgO88nh7RHskOXMx3KjNi2TzjAZ3QacBaxMcJCuokh359k1VIuoHc3NFghzLfb/jx9+MGPpsQOzloupOB8970/sVpEEs56KdTnHD4PrSigeOTujHrElkL/hqVKNfk105S1eYeQtSYJuXPPg/W71fQdczX+SmLmnliCuTJHlBV2EmYNg3eRRbdBe2WunvjcuCPN49Tq5c5x8Jb27ddO3COpmzxbKB7OE/m7uZFtEA3hLdJ6QkjSatM1Y36htrXnGZ2fz41h8/30a13KCWe2+cTHP6FAMOBAIBAYDMGAbxL+y3/5L5KktVzw7szxO8+dlmRsLLOSJ0+9UbbBX5UW33syw3joQ7UvVnEqy3G4J79ZfWM5HyxmegY3tXqLYZOwuL5uC23Zl4drEVmwPazd+6SxH2MkPuuy1BoPzUIEWy8gUy4dKOhtZyy9sFla1uef772jdg8hLloEHbiAGbvk2EUsYteBvPbkiROSpLXdLMG1uDExzkuXUo+/3cb7V6qrC+Z1z6MfrtdBfHirG/f30sHCKo8czmPOc2dOYxz7ziPJg3nCY/o7iETSsblnHgNuO6Rs9bSup8sF96XjhrbT7boxPpnvud0ztg/m20Uw4EAgEBgIwYBvEuh1NZ3Zy3VjKPAZWNi3n02dMbyq4MjRo5Isvlr6ldVtYCp7s9jiwz/9Y+U7MuDf+9rjkmqs01kMBfqbDfMba6oSpMqGOkKOYoLT7XjglRKt9LgvngjDwg94ZqbGTB/5sUckSa89/3pnP++ft9UY/ahHdELMuGVzzk7ZnuvCIEaqc7yTqx6mHnyUwZdtLl9Kcdnx/bnTSI4Tu1FNEXTcn65r3gxuXAzhY/TKEWK3PF/Mua8o9mcJ8aHDObewU+eB+C59BCc20/EuXrxUtmmrGHZ6DJQWrAOGVP2JpXr/MZRaWkqrh2PHj5dt/u5nPqPAKIIBBwKBwECIF3AgEAgMhAhB3CSwVGXJWZIWkn7ig0mc8NzptIzcbBIikrTMUrFp/e5+vG3yy0uiKHD/yb/2k5Kkb/3ptyRJK9a2aLwpUQMeCtki0VcaTrrrVhoL7mX4O/hymHmo/RlHm4NyHeMTab/5+TpXLIMf/lDySfjT//qnkrolTSWM0CSEPJRCY0xKwkqCzLfJ80D52dRknWvOdzmXezGuG+bAxn0g3DGbvR06/hm7NOqkRVKdB8IK29lNjgTqlcuXyzYeFknbbuex1nuIQxlhE2+HtZJ/X13tuqnt+hjzHLVhBgfzwdx7U04SliQjScbtN6+TQD+CAQcCgcBACAb8A+Dpp6sEF2ZyOYskHIXV4iiVGadLPTebEiQYhidUavPH9BO5sB8LlvrBH0/JvE1jsJStcZw+kUNxCMtMz9kyRfiUf/G3S5ERYEA0y7UaS27L4HweKKFCykyiyhkbpW2Un917ZGFkrIgDSDySlKQUUKpsbiU7hG1O95S65RKrN86dk9RthMo5GPNOno9pl2zT+DMnA5ev1U4pJE5h1Rfys+PiG+7H5exmBtu84847yzaUyjGfyJeluiLheq5fT/O5d28VYsCc27JE7+rCPetLqsK48b0m+fbxj39cgbdGMOBAIBAYCMGAfwBcNYYAM9nNsd8Vi8O9fjmXGyEuoDjfmN+HfzoV6BOHhPnCwKQaxyv+reM1ntn2MCN2OLFRz/GBH38075dNfbK89MlvPlm2aYUDs8YYS0lVvo4XnnhRLYhN0hUCYxqPi3JsmJ7HwgEMy2PYZX+kx/nv2netrhYYdyk1yzHYvpj6+jPfTWN84P3lOwQXjA1GT6lXuo6JzjZc18GDB8o2xHxfOnUqbbtar7WY3uT9YMcdr948fzxfDby92wAAFhpJREFUdKmYs/vCiuBcZukXLl4o38HYF+bTKuHA/ipWAXPFXzqNlee602MvTwDz5zF9YvnEfH1sgbdGMOBAIBAYCMGAfwD8+Ec+Un7/7P/xv0uqmeCDhypTemR/FjxkpvL4C6lfnLNC7ywsqbdTL4ykVBGM19tXivg3uiKHjY4cNFcN5O8ozv/QT36obFP6o2G/aDFoOiUQn/aeYQVIgJEgF9mwM2BsMXOHX6tM4Nc33kgybcyBvMsDKwikx8Sw/TiteQ/M3Lsssw0s02cclk1lANfsXUyKMU6uWqDfGc+AVKtTkBR7LJtVC/Pa9oaT6jxu5O+I3TqTpyMFOQHEGlK3q7YkzS/k7sob9bmg8zJMmHP4I8h3SJi9KuVwlkkTg//Yxz6mwJ8PwYADgUBgIMQLOBAIBAZChCBuEki64dXrfqnreTlLWILlrJcrfevL35Qk/ehPJX+H48ePSeomQupSOa0NfRlJOINldV+r9YnScJOGl10XLD9fWQ7b/gt7KPdK46CBpruZEfqordrTOHzJTMcETjIxUb/79le+I6kmjygb86X7fccXO58RXvCEISGEsaYjRSfUg1dvPs7u80/Ur/J1k7SaW09L8PGr1cFuJt+PK68n34rNA+meXbhQSxGZz8W9aczLy+4Rktu35zKwlevpGVpbq4m6ldX0GeEe7oGHFgg5sM2BAzUJeCk/jyTWDkyMJuGmpnLCNN9XQlQeNiIUw+zNz4864P3Kr/zKyLEDb41gwIFAIDAQggHfJOz5QCoju38+l3QZ09qb2Q8JIOSxnjSCKb34eGpDfuzYsZFzwJhKiZoxFFjp7Gy3mN6lt2M5CUdibT0nf7ycrXZlyJJXY658VxJzlH+5SCKPkeTRVjNmyVhxHvMz33m2fEfyrXVoO75v9FGFHSM7dvcuWB1Y28xSXPNpJgnWV+pGD7b5t5DnIlRYz8ekn5+vWhgT98OPd205bb+6lpJ3uKBduXK1bEP52dz8bOe7EydOlm1YUVy8kMrPfGVFohWWytz7GEmwcZzxJoEqjSaJvZyNRGPgL45gwIFAIDAQggHfJNx1512SpFdeekZSN3ZKedDSvlTC9MhilqcaG3v1YmJoyFOXlxPT8XheK85whlKMZdgm9+XyLr6wsLZTsIs4YJ7FPMaugzjzbsOGOt2Eu1VPtq/3puvuB3OTRrtLvOdEYlcubGH8FPzTm81j0YgDiuglx0zHe5gf1+Ule4gk2L7cK/ccphwwzxndUJY+9ONlm4liFJT+9j5+rGCIz1LO5uZIrVXzopk8AYbECmfD7ifXSFwX2fCEd7vI10oXlirGsdVTji+zLbFoSfqVv/N3RsYU+PMhGHAgEAgMhGDANwk/8RM/IUnaei51pHj55ZfLd2SiydYTB3QGC2CgVFO4EILtYR9TxqZ8O6lm9r13F0wJVjs7kxikM3HYOjHljriBSoIdOkmkz2FXPg7YaCse8TF996vfkySde6NWFrByuPdoYlrYYnoXX64bE5yJxuxIqiyQscKI3ehmu1hubnWOI9WYKfHlPTnm6T3hikVlYw+K7FdStcwcG50HVhnEXpmzvjHyc3Hf4shxmDNWWFeu1o7J3I+FBaon0jwsmaBkHpac52hhOj2fHlNn/pnXv/erf0+BHxzBgAOBQGAgxAs4EAgEBkKEIG4yjv/kz0iSzpz5t+UzEmunz5yRJB06eFBSdxl475GUXJmaSkvd7343+eF60geHs5/8az8lqav5b70jnskevQ988IG6SRMeYBeWnpI34yThVr8jLEFXBRJbHkrZLR0xuv+3e+LuqexLzLysWpeJdhwkCL2crjis0R1iinHVJBq/U6pGeMIFDCyrPWEKENLwHdfoYQ7CEWxbfBt6knmvv/ZaumYreStNUXE4Iym4XROnlAHS9aLdV6peEDwP3siVTitq3Mw6CdxcqsbzMTWb5t5LzQhp/f2///cVuHkIBhwIBAIDIRjwTcILLyQBBe3ox3IbcknamKMNfWJjq2dOpW0sQVaknruJmbzvnuQw9ezrtT8YiZf/8V//h6Rugg1ehswYFtRJzk12S8xqEmpU0FETbtbWforytdzefrPbVj3tPzF6XknPfLuKLc423SU8Caimh9x4cVMzVzYELTicZZY83tN1A1Bq5i3fW8c2R8uKYemdkr3mu+L3bPte/PqX0zb7juQxVgbNWEh0Mg5f2UwhMsmrH77zvnFbDUsfcdZTFQGx2hnrPDv5ucj3t3gP21h/6Rf/9sgxAz84ggEHAoHAQAgGfJNw//33d/5+6qmnyu+Y5hB/3D6S+3m98WrZBuFBK339wP3Hy++nziemBftxNsf+MJsP/U/J49e76pbuEHSUyERr0zr1tmY6nbKpyS5TJM46OeF963Y6x6S327J1D6G/GszX+dpdB5HcplIq5mNxcbFsM9F0jqZUTd7ptxFQlC7JFjuFuXKNLuGFMW8VX+RREUprOISAwn2eiXNPHjyhFqtZFFG6K7Mi2RztTVfuQz6/lyDCVIkdI+Lxz/ba/EnqODnDitmGc33qFz41MubAzUUw4EAgEBgI8QIOBAKBgRAhiJuEz//H/yhJOnP6tKRuaRehgq1cLkQSa9yaUe42ySe8bd0Z6+RSWo4vL6djT/XcPpJEtJnxNuxUUJVlOH68HbVc9hXuKc2iwaSapJF7MLDk/d7XksqNZb77PRCO4JrvOVKVY9ezJy4Jv5qYquNh/MUDIh/HmxARikF9yD4eQuDYRfVmy3oSlZR4eav3dhyEA7iusayGlKSJXHK42jimpWtNx8bztzRdtXHg/YAnCCEZTwaS8KRNkPtE4+q2L4cXmEeapkrSwQNpjDyzf+eXw9vh7UIw4EAgEBgIwYBvEvCGxcNhwbwLKOWCDc7lovr1paNlm4O50wKJIArfN29UkcJG9mm450g6tpdanXojsSgYzlf+6KuSqsOVJH30Zz6az4//a2aHU6PNPVsvB2nUTxjg6ZDGmJje5exqhtPXqrmZndyP2ANf4srmiuChETW4G1rractPT0wxNy5qkLreFqwOKNnDH1mq5XysXkiUXTchBeedIfmWr2fBvBzG7ns47Z+fC28KipCDlQUiD+/sccedd+bP0jnW1tJceUNUnhVKGf2el8Rrnk+Smd5clHsdzPftRzDgQCAQGAjBgG8SXnk1lZQhEljcV7sE0A9s26XD6pYbXcyF+psXkmgDluoxy/mmL5eXiN1zOH23sZRY4GNPJ8a4fK32IPvTP/xTSbU07aN/NTHiVrTgn/n5ibl+LzNeOkFQMibV7hJIbmH9Xpq1nbs79JVUlZb3mbGt9TBP2DEyXxjoWo9TGUKO8Z2xkWstpWZb6bpcEELM93Iu+SO+6+3uZ2e6rHTywfdLkuZMwssxWb14LNnLxSSTHRuDrSWD6V7jgexCiuLz3NNp5Wp2RuN5vDMzam8r/5lPf0aBYRAMOBAIBAZCMOCbBLL266VvmvVJywKGifyT+N3Gds2Iw942FpMEGabTMbrJLGYdpnPqmfLdDJn8HNd98I7Ewp4/XVkWsVZij3/0hT8aOUfpNpEZuDM+4qDEY4nrOnMkZkrvtfuyr2/bRUOqoo85E4vAhtl+occwp60YAZ2uyDDEXfyA03U589tshCAu762VGt1xTdplTL330XycLEjJc+dMfPUGnU4Sg7/ccw68eudnE/s/eaKKNg7nTtqsKIpJkknEWZnw0/2ET+becXfdlTq2EPv92M/+rALDIxhwIBAIDIR4AQcCgcBAiBDETQKF8iRkVq18bGY7O5Pl5etmTvqs3VjTm4HlvjdoZHnP8npsoTbsLIKDvFTm7yPmwcAS+ZnX0jL4ak6edVzVShPJXHLW431AOIDlvPsKPHAyLXE3N1NIZLrHf5bztU1Cffy0vmEcUw8+WrZZy+ViK7l8a/bMKUnd5FVpIJr/nkYYs1Wvh/AAoQgPD3Dd1UMh/X31QPXm0Hrab24+LfkJLXnJHGGGCxdS8o17L9WQFOGNw4dT+MnFM4yDufJyPkDohXCNh2bmisteOk6EHt5ZCAYcCAQCA2Fsd2tzNDsS+L7xG7/xG5KqAEGqUl8EDysriR17GRrSUJpI8l1fuRHwciO2b7dxh6+FhVzi9VJK3j33/7V3PztylEcAwGvXu/6z2BgIGEyikCiREEZCOUTiFcINJUGcgpCQTEJ4B87wFD4hIXJAQpzDlWdIYskYA3KMCQ5gG8w6h+7qrumZRIkiKBv/fpcdFm/3zCwuar7vq6pxg64eA1v2462Z67VF393HfvyDWFoeX8uMtm4MZcaZWX4dFb+zKMT4+kdDl7mVaRdjFplFFscvD5NG6tG/fM8PL45t1QwyO5Xl17qZuPvoEyuva+qcVrLLfK3ZnS3/Xf3dX7hwYXz+q1NEIubCixMnhiOID/9w2Hy76665iOfqeN886pcbqIdKKXH2mc5S4nqPB8drv/DCC8GtRwYM0EQG/C05c+bM9DiPJeWRrmWWGjFnNMsy35VCiDHDyvXRup6YGVo2dMkMsB4j2xvXKo98dC4iVjPotJzOcLhkrpmNZcY3l/vOrydLXfO+eZ29cp3LY5lyFnLEhgY5U3nvTx4dXnPJTvPx7vm/rtzzSOmlvLOYcpFH8GrRSGa+eftjT/xy/vnxNeb7mu99vocR8/Gz62ORxdXxvT/3/rnpz+Q6/6aR8w+fHDLeo2PDnCxCOVLWgLMUO59HFo3s76+/Z3lk7fTp08HtQQYM0MQpiG/J888/Pz3OVpWZ+V67NmRKX34xn5TIHfRDY9OVrWmK7/z/yGz28tlnw9ptLavNooYDB1az02ul5WWeDMjsNO9Zr5NFEZlV1awyWyMuiypqJj21dNxQZpwOL8qs6yeCvFZmrFu5tl1aPG7nCYWxqGBvsdMfMU+yyE8LU+vH8p7nJ5NpDbc8j3yvMgPNjHh7a31NPltMXtmwlpy/s/yEc//9D8zvQ05snpocDfe8Wgo5sjXlyYceWnkd9bW+/PLLwe1JBgzQRAAGaGIJ4jvwm18Pww3fe2/o0Xvhw+Fo0tUNywPL7ldRPt7vLvo0VHncbGXEe8w9Yqv9K0NRwKYjYlNv3cUkieXjiPmoWl2C2F8MB51GpNeNtuyXkd/bsBmY19k+Oww3rUsx24tJFrmkkZuEERFXxmWa3GjLooucdFF/fndDF7FpUGf2gNhZ/6uSG3O5pPRV6TMxPdfFpmaVPYe3vso+wOPSTO0cNz7OpaATDw7Hyp761VNr1+P2IwMGaCID/g49+eSTK//853ffnR5//PHHETHPIMvNnjoKPrPJzCDrMbRpmkIpvBh+fv4VZ/e07KqWWWXNLnNDKq9TC0Eyi/1mka1vb+imNo1Yz/LpDRng/oZNuLzH9Elgf31G3cHFtebNsPn9+GLRqe3Qhv7GW1vDcz302C+G51M6jH1VrrXpdUXMG4W5MfbpP4ZS5vrJ5t57hq50mWWvfEIZn0v+HvO5PXBi3qjLo2pPP/108P0jAwZoohDjFvPmn96MiDmrqmuWKddHVybjjgf9d3dW++nWicU3/zasp65ktbE6FTkLIPKI1KZpGZnV5hpozQpvLtaApyyvZJT5/JdZasSc+S6bAdUsPSf95nPMIoVPS5FFljBnAUje40Z5rsfK3L6IiM9LmfKyFDsz6C/LOvOHHw0TsPM4YR4fq4UU2X83l5ePHT229j5kdvzKK68EdxYZMEATa8C3mFOnHo+IiLNnz0bE3MYwYi6cyOwym69UuWaa65k1O70xrk1OP7+1XoiR2VhmgHXNdGcxrSLXZWt2m/fLzHFqC1mus78oya7ZbT6XvGauE9eCkN3xz+Raa7aRvFraex4e75/3yDXdukaez+ny+PN1YnGu+ebpkuvT9Iz5ddxzfMxux99LnibJYprhmtdXXledln3y5FBc8dzvngvuTDJggCYCMEATSxC3mMdPnYqIiKPjdIccdx8RcWkcaZ4bdHtH1osspl4BY7esrTKvYtqYy4/+48fsrQ0TMXKDr25aLY9y7S86nkXMx832F0fDNi1B5LLAdimAyM2ynCyS0yZqIUcWWeS1c7mkDvdcvo6pv3A5zpabZllIUeVyS/4ectrG52NhR8Tc/Ww6opa9HMoxtLvvHo78vfbqq2v3ABkwQBMZ8C3qkUceWfkaEfH++fcjIuLixSETvnJlHjmfCeLeOI0hpzLUbOzmT4feujkRI7PEAxuKLTIT3S9lsWl7UTq8UmQx/nzeN7PUlblzWZ67oWfxTs6AG6eHZCadmX29dma++XWndF47vsjuv9xw5G3qVTxu8GVGW++bm2f59Z/leWRXupzllgUUL/3hpYD/hgwYoIlCjO+5119/fXp86ZNPImJuGrMzTpQ4XAoHlsfHaga8nJax6RhZZsPXlhnwz05NfyaPcl0fpwof2F7PA/LYV/bKrevMi3bEU5FDbSp0Y+zRe+nSpdV7XpuLVzKTPj6WZtf5eZnx5ry2g4ujbxERv3/xxbXnDf8LGTBAEwEYoIkliDvIO++8ExER5z/4ICLmjandg/Pm1YFzf4mIeWOrLkFsL5YKskpt5+ePr30vq+RyKaH22j24oQ9xys3DHOP+zY1hmaP+R5pXyuWOo2N1WR2YmUsQefwtj5HV/sjPPvvs2v3huyQDBmgiA76DvfHGGxERcfHvF6fv5SbVNJa+bNBlFpnZbR4Nq13Zpk28LPoYM+i9knnu3TU8zk5vtYvZJ+NG4dRrOI+llSw9ixv++JLjXtzeZMAATWTAxNtvvz09Pv/BUPqcR8zqOu3u7upRrCzLrdMjvl4UcEzFDmP2HBFx79gjN6/9Remxm13c7rvvvoiIeOa3z/wfrwxubTJggCYyYP6jt956a3q8f3PIaq98NpxUuHz5ckSsNrjJEw65zvviacUK8O/IgAGaCMAATSxBADSRAQM0EYABmgjAAE0EYIAmAjBAEwEYoIkADNBEAAZoIgADNBGAAZoIwABNBGCAJgIwQBMBGKCJAAzQRAAGaCIAAzQRgAGaCMAATQRggCYCMEATARigiQAM0EQABmgiAAM0EYABmgjAAE0EYIAmAjBAEwEYoIkADNBEAAZoIgADNBGAAZoIwABNBGCAJgIwQBMBGKCJAAzQRAAGaCIAAzQRgAGaCMAATQRggCYCMEATARigiQAM0EQABmgiAAM0EYABmgjAAE0EYIAmAjBAEwEYoIkADNBEAAZoIgADNBGAAZoIwABNBGCAJgIwQBMBGKCJAAzQRAAGaCIAAzQRgAGaCMAATQRggCYCMEATARigiQAM0EQABmgiAAM0EYABmgjAAE0EYIAmAjBAEwEYoIkADNBEAAZoIgADNBGAAZoIwABNBGCAJgIwQBMBGKCJAAzQRAAGaCIAAzQRgAGaCMAATQRggCYCMEATARigiQAM0EQABmgiAAM0EYABmgjAAE0EYIAmAjBAEwEYoIkADNBEAAZoIgADNBGAAZoIwABNBGCAJgIwQBMBGKCJAAzQRAAGaCIAAzQRgAGaCMAATQRggCYCMEATARigiQAM0EQABmgiAAM0+RfSC3wjro4EEgAAAABJRU5ErkJggg==\" y=\"-9.344844\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\">\r\n <g id=\"xtick_1\">\r\n <g id=\"line2d_1\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"medde961efe\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"34.42\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- 0 -->\r\n <defs>\r\n <path d=\"M 31.78125 66.40625 \r\nQ 24.171875 66.40625 20.328125 58.90625 \r\nQ 16.5 51.421875 16.5 36.375 \r\nQ 16.5 21.390625 20.328125 13.890625 \r\nQ 24.171875 6.390625 31.78125 6.390625 \r\nQ 39.453125 6.390625 43.28125 13.890625 \r\nQ 47.125 21.390625 47.125 36.375 \r\nQ 47.125 51.421875 43.28125 58.90625 \r\nQ 39.453125 66.40625 31.78125 66.40625 \r\nz\r\nM 31.78125 74.21875 \r\nQ 44.046875 74.21875 50.515625 64.515625 \r\nQ 56.984375 54.828125 56.984375 36.375 \r\nQ 56.984375 17.96875 50.515625 8.265625 \r\nQ 44.046875 -1.421875 31.78125 -1.421875 \r\nQ 19.53125 -1.421875 13.0625 8.265625 \r\nQ 6.59375 17.96875 6.59375 36.375 \r\nQ 6.59375 54.828125 13.0625 64.515625 \r\nQ 19.53125 74.21875 31.78125 74.21875 \r\nz\r\n\" id=\"DejaVuSans-48\"/>\r\n </defs>\r\n <g transform=\"translate(31.23875 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_2\">\r\n <g id=\"line2d_2\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"79.72\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- 20 -->\r\n <defs>\r\n <path d=\"M 19.1875 8.296875 \r\nL 53.609375 8.296875 \r\nL 53.609375 0 \r\nL 7.328125 0 \r\nL 7.328125 8.296875 \r\nQ 12.9375 14.109375 22.625 23.890625 \r\nQ 32.328125 33.6875 34.8125 36.53125 \r\nQ 39.546875 41.84375 41.421875 45.53125 \r\nQ 43.3125 49.21875 43.3125 52.78125 \r\nQ 43.3125 58.59375 39.234375 62.25 \r\nQ 35.15625 65.921875 28.609375 65.921875 \r\nQ 23.96875 65.921875 18.8125 64.3125 \r\nQ 13.671875 62.703125 7.8125 59.421875 \r\nL 7.8125 69.390625 \r\nQ 13.765625 71.78125 18.9375 73 \r\nQ 24.125 74.21875 28.421875 74.21875 \r\nQ 39.75 74.21875 46.484375 68.546875 \r\nQ 53.21875 62.890625 53.21875 53.421875 \r\nQ 53.21875 48.921875 51.53125 44.890625 \r\nQ 49.859375 40.875 45.40625 35.40625 \r\nQ 44.1875 33.984375 37.640625 27.21875 \r\nQ 31.109375 20.453125 19.1875 8.296875 \r\nz\r\n\" id=\"DejaVuSans-50\"/>\r\n </defs>\r\n <g transform=\"translate(73.3575 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_3\">\r\n <g id=\"line2d_3\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"125.02\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- 40 -->\r\n <defs>\r\n <path d=\"M 37.796875 64.3125 \r\nL 12.890625 25.390625 \r\nL 37.796875 25.390625 \r\nz\r\nM 35.203125 72.90625 \r\nL 47.609375 72.90625 \r\nL 47.609375 25.390625 \r\nL 58.015625 25.390625 \r\nL 58.015625 17.1875 \r\nL 47.609375 17.1875 \r\nL 47.609375 0 \r\nL 37.796875 0 \r\nL 37.796875 17.1875 \r\nL 4.890625 17.1875 \r\nL 4.890625 26.703125 \r\nz\r\n\" id=\"DejaVuSans-52\"/>\r\n </defs>\r\n <g transform=\"translate(118.6575 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_4\">\r\n <g id=\"line2d_4\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"170.32\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- 60 -->\r\n <defs>\r\n <path d=\"M 33.015625 40.375 \r\nQ 26.375 40.375 22.484375 35.828125 \r\nQ 18.609375 31.296875 18.609375 23.390625 \r\nQ 18.609375 15.53125 22.484375 10.953125 \r\nQ 26.375 6.390625 33.015625 6.390625 \r\nQ 39.65625 6.390625 43.53125 10.953125 \r\nQ 47.40625 15.53125 47.40625 23.390625 \r\nQ 47.40625 31.296875 43.53125 35.828125 \r\nQ 39.65625 40.375 33.015625 40.375 \r\nz\r\nM 52.59375 71.296875 \r\nL 52.59375 62.3125 \r\nQ 48.875 64.0625 45.09375 64.984375 \r\nQ 41.3125 65.921875 37.59375 65.921875 \r\nQ 27.828125 65.921875 22.671875 59.328125 \r\nQ 17.53125 52.734375 16.796875 39.40625 \r\nQ 19.671875 43.65625 24.015625 45.921875 \r\nQ 28.375 48.1875 33.59375 48.1875 \r\nQ 44.578125 48.1875 50.953125 41.515625 \r\nQ 57.328125 34.859375 57.328125 23.390625 \r\nQ 57.328125 12.15625 50.6875 5.359375 \r\nQ 44.046875 -1.421875 33.015625 -1.421875 \r\nQ 20.359375 -1.421875 13.671875 8.265625 \r\nQ 6.984375 17.96875 6.984375 36.375 \r\nQ 6.984375 53.65625 15.1875 63.9375 \r\nQ 23.390625 74.21875 37.203125 74.21875 \r\nQ 40.921875 74.21875 44.703125 73.484375 \r\nQ 48.484375 72.75 52.59375 71.296875 \r\nz\r\n\" id=\"DejaVuSans-54\"/>\r\n </defs>\r\n <g transform=\"translate(163.9575 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-54\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_5\">\r\n <g id=\"line2d_5\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"215.62\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- 80 -->\r\n <defs>\r\n <path d=\"M 31.78125 34.625 \r\nQ 24.75 34.625 20.71875 30.859375 \r\nQ 16.703125 27.09375 16.703125 20.515625 \r\nQ 16.703125 13.921875 20.71875 10.15625 \r\nQ 24.75 6.390625 31.78125 6.390625 \r\nQ 38.8125 6.390625 42.859375 10.171875 \r\nQ 46.921875 13.96875 46.921875 20.515625 \r\nQ 46.921875 27.09375 42.890625 30.859375 \r\nQ 38.875 34.625 31.78125 34.625 \r\nz\r\nM 21.921875 38.8125 \r\nQ 15.578125 40.375 12.03125 44.71875 \r\nQ 8.5 49.078125 8.5 55.328125 \r\nQ 8.5 64.0625 14.71875 69.140625 \r\nQ 20.953125 74.21875 31.78125 74.21875 \r\nQ 42.671875 74.21875 48.875 69.140625 \r\nQ 55.078125 64.0625 55.078125 55.328125 \r\nQ 55.078125 49.078125 51.53125 44.71875 \r\nQ 48 40.375 41.703125 38.8125 \r\nQ 48.828125 37.15625 52.796875 32.3125 \r\nQ 56.78125 27.484375 56.78125 20.515625 \r\nQ 56.78125 9.90625 50.3125 4.234375 \r\nQ 43.84375 -1.421875 31.78125 -1.421875 \r\nQ 19.734375 -1.421875 13.25 4.234375 \r\nQ 6.78125 9.90625 6.78125 20.515625 \r\nQ 6.78125 27.484375 10.78125 32.3125 \r\nQ 14.796875 37.15625 21.921875 38.8125 \r\nz\r\nM 18.3125 54.390625 \r\nQ 18.3125 48.734375 21.84375 45.5625 \r\nQ 25.390625 42.390625 31.78125 42.390625 \r\nQ 38.140625 42.390625 41.71875 45.5625 \r\nQ 45.3125 48.734375 45.3125 54.390625 \r\nQ 45.3125 60.0625 41.71875 63.234375 \r\nQ 38.140625 66.40625 31.78125 66.40625 \r\nQ 25.390625 66.40625 21.84375 63.234375 \r\nQ 18.3125 60.0625 18.3125 54.390625 \r\nz\r\n\" id=\"DejaVuSans-56\"/>\r\n </defs>\r\n <g transform=\"translate(209.2575 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-56\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_6\">\r\n <g id=\"line2d_6\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"260.92\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- 100 -->\r\n <defs>\r\n <path d=\"M 12.40625 8.296875 \r\nL 28.515625 8.296875 \r\nL 28.515625 63.921875 \r\nL 10.984375 60.40625 \r\nL 10.984375 69.390625 \r\nL 28.421875 72.90625 \r\nL 38.28125 72.90625 \r\nL 38.28125 8.296875 \r\nL 54.390625 8.296875 \r\nL 54.390625 0 \r\nL 12.40625 0 \r\nz\r\n\" id=\"DejaVuSans-49\"/>\r\n </defs>\r\n <g transform=\"translate(251.37625 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_7\">\r\n <g id=\"line2d_7\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"306.22\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- 120 -->\r\n <g transform=\"translate(296.67625 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_8\">\r\n <g id=\"line2d_8\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"351.52\" xlink:href=\"#medde961efe\" y=\"553.466719\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- 140 -->\r\n <g transform=\"translate(341.97625 568.065156)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"matplotlib.axis_2\">\r\n <g id=\"ytick_1\">\r\n <g id=\"line2d_9\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"m0302d2e27e\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m0302d2e27e\" y=\"10.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- 0 -->\r\n <g transform=\"translate(19.925 14.798438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_2\">\r\n <g id=\"line2d_10\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m0302d2e27e\" y=\"124.249219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- 50 -->\r\n <defs>\r\n <path d=\"M 10.796875 72.90625 \r\nL 49.515625 72.90625 \r\nL 49.515625 64.59375 \r\nL 19.828125 64.59375 \r\nL 19.828125 46.734375 \r\nQ 21.96875 47.46875 24.109375 47.828125 \r\nQ 26.265625 48.1875 28.421875 48.1875 \r\nQ 40.625 48.1875 47.75 41.5 \r\nQ 54.890625 34.8125 54.890625 23.390625 \r\nQ 54.890625 11.625 47.5625 5.09375 \r\nQ 40.234375 -1.421875 26.90625 -1.421875 \r\nQ 22.3125 -1.421875 17.546875 -0.640625 \r\nQ 12.796875 0.140625 7.71875 1.703125 \r\nL 7.71875 11.625 \r\nQ 12.109375 9.234375 16.796875 8.0625 \r\nQ 21.484375 6.890625 26.703125 6.890625 \r\nQ 35.15625 6.890625 40.078125 11.328125 \r\nQ 45.015625 15.765625 45.015625 23.390625 \r\nQ 45.015625 31 40.078125 35.4375 \r\nQ 35.15625 39.890625 26.703125 39.890625 \r\nQ 22.75 39.890625 18.8125 39.015625 \r\nQ 14.890625 38.140625 10.796875 36.28125 \r\nz\r\n\" id=\"DejaVuSans-53\"/>\r\n </defs>\r\n <g transform=\"translate(13.5625 128.048438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_3\">\r\n <g id=\"line2d_11\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m0302d2e27e\" y=\"237.499219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_11\">\r\n <!-- 100 -->\r\n <g transform=\"translate(7.2 241.298438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_4\">\r\n <g id=\"line2d_12\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m0302d2e27e\" y=\"350.749219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_12\">\r\n <!-- 150 -->\r\n <g transform=\"translate(7.2 354.548438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_5\">\r\n <g id=\"line2d_13\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m0302d2e27e\" y=\"463.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_13\">\r\n <!-- 200 -->\r\n <g transform=\"translate(7.2 467.798438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"patch_3\">\r\n <path d=\"M 33.2875 553.466719 \r\nL 33.2875 9.866719 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 384.3625 553.466719 \r\nL 384.3625 9.866719 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 33.2875 553.466719 \r\nL 384.3625 553.466719 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 33.2875 9.866719 \r\nL 384.3625 9.866719 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"pac404cc96f\">\r\n <rect height=\"543.6\" width=\"351.075\" x=\"33.2875\" y=\"9.866719\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAJBCAYAAACtR3lKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9abBlV3mm+e5zzx3y5s1RKSQhRlfhxsZGAgkJDSABAo0g2SAzF7bpprvarv7RURHt7j/VFRUV0X+6O6IrXBWNzWSbwQKhASEJgQCBQCAJYbBxY4sCJBINOU8373x2/1jrXd+3hkyEUill3vs+EYpz7tlr77X2oNzf/HV930MIIYTwDJ7rBQghhDjx0MtBCCFEhV4OQgghKvRyEEIIUaGXgxBCiAq9HIQQQlQct5dD13VXdF33T13X/aTruj87XvMIIYR45umOR55D13VjAP4ZwJsBbAfwAIB3933/j8/4ZEIIIZ5xhsfpuOcB+Enf9z8FgK7rPgPgWgDNl8O2bdv6l7z4xcdpKUIIIVr8/JFHsGvXrq617Xi9HM4E8Av393YA5/sBXdd9CMCHAOBFL3ohHvzOt47TUoQQQrQ497UXHXHb8fI5tN5Emf2q7/sP931/bt/355667dTjtAwhhBBPh+P1ctgO4IXu7xcAeOw4zSWEEOIZ5ni9HB4A8LKu617add0EgHcBuPU4zSWEEOIZ5rj4HPq+X+667k8BfAnAGICP9n3/o+MxlxBCiGee4+WQRt/3twO4/XgdXwghxPFDGdJCCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUSFXg5CCCEq9HIQQghRoZeDEEKICr0chBBCVOjlIIQQokIvByGEEBV6OQghhKjQy0EIIUTF8Fh27rru5wAOAlgBsNz3/bld120F8LcAXgLg5wD+oO/7vce2TCGEEM8mz4Tm8Ia+78/u+/7c+PefAbi77/uXAbg7/i2EEOIk4niYla4F8In4/RMArjsOcwghhDiOHOvLoQdwV9d13+u67kPxt9P6vn8cAOLn845xDiGEEM8yx+RzAHBR3/ePdV33PABf7rrux091x/gy+RAAvOhFLzzGZQghhHgmOSbNoe/7x+LnDgA3ATgPwJNd150BAPFzxxH2/XDf9+f2fX/uqdtOPZZlCCGEeIZ52i+HruvWd123gd8BvAXAPwC4FcAH4rAPALjlWBcphBDi2eVYzEqnAbip6zoe51N939/Zdd0DAG7ouu6DAB4FcP2xL1MIIcSzydN+OfR9/1MAZzV+3w3gTceyKCGEEM8typAWQghRoZeDEEKIimMNZRXiuHP//Q+k733fAwDm5g4DAA4dOgQAWFlZSWPGxsJjPTk5CQB485sve1bWKcRqQpqDEEKICr0chBBCVMisJE4IHnzwe+n77t27AQCj0QgAMDExkbYNh2MAgKWlpTimz8YCwOLiHABg9vAsAOBzn/scADMzAcD69euzYy8sLKRtPObMzAwA4IILXnsMZybEyYk0ByGEEBXSHMRzyre//W0AwP79B9Jv1AoGgyC7rKwsp23UHOh0Hg75CPdpzPj4ePglOq/5OT5uGkjXhWNT41hcXEzbDh4MTu59+0Ibks99bns2JwBMT68DAFx++eVP+VyFOJmQ5iCEEKJCmoN4VnnooYcAmF+Btn4vlY9/4zYAJtUvOH/C0iCXZ6gVTFz+juq3lZVR/FyOc82nMcvL4Tf6HPz8k5MTccxKto7l5aU05sCBsP+NN94IAJiamorHM7+Ghdf28biT2ScAXHjhhRDiRESagxBCiAppDuK4c++996bvBw8eBAAsLQXJu/vqzQCAgYtIGkQ/AiV2agIAEAs9Jn8Ex3Rfu9X2j9v66EcYixL82FvensbwkEymow/Cf++6cGz6NQaZ1tLDQy1jMDD/CDUHnnMf91laNA3kRz/6RwDA9PppAMD4cDxt47ybNm3M/vb+kTe/+c0Q4nggzUEIIUSFXg5CCCEqZFYSvxa7du0CYKGnNMsA3lQzl23zZhAmmA2+FnpADWPYqYWk2neGtHqz0thYCGWlean83Y9PJqc41pue+Nsorq05R7G/H8NzGtHpPQompEW3jvVvex8AYOPGDQC8892NieYkmrL8teK8NE/xuviw34985CNxjk3xM5igLr/8LRDiWJDmIIQQokKagzgiO3fuBADs2rU7/XbwYJBa5+dDWOhgUMsX3EYtwTtv+698PhtbJqoBJjEPC8e0/621X7k/w1SpgXhKZ3epiQDASnQyT8TQVibX+e+U6hcXgsQ/GLPrMYraBMNmB4OgMUxNmubAcNt5F2ZLBoMu258aB8Nmw7mFMiCsTsv78+EP/0UaMz0dtJP3ve+91RxCHAlpDkIIISqkOYiKX/wilIvYseNJAMCBAwfTNgrYlLQXFhZRkmz8caxpEH5bLql7DcDKXQTp3GsnlJ4p+VMr8P0cuI37ldqG30ap3OP9H/54fs2Uxjk/j+PDVLt43sMYnrq0tJj9DVhCXHk+ALAcz2l+PvgqFhfrc7U1MmEvJgW60GD6gD72sY8DALZu3ZK2bd4cvl9yyeurY4q1jTQHIYQQFXo5CCGEqJBZSVRs3x7MSnQsj43VMgTNF31vzmJabWj6GRuLYavOLMRM6NKs5P8us6BLM48f0wptLZ3MVmtppRrTMi/RtFOu0fd84H4037D3w+zsbBpDUxHXz/pNzKYO28az/X39Jzqry+tAE5Kfj2uj6cpXoGW4LBDOh2YqAHjs8ccAAJ/9bOh5cf31VqNKrG2kOQghhKiQ5rDG+dGPfpS+79u3D4BJluY8rmsKUXr1kaTmgM4dpgzhDN9zeeRIDmpPS+IvE938cVOCW9xWSvBAnWDX0jxKvHZhWlU4N3aW8wluB78eku7mYmJbWqM7/Fycdurqd8U1mrMayENwuf/U1Lr028aN4dowlJXn5TUYwl4Y/v5Qm5lbCU5rahBMpgOALVuC0/q8815THVOsXqQ5CCGEqJDmsMZ4+OGHAQB79oQuZwcOWCmG1Bsh2tFN8vaS5lgcS4ndJG7re5CHh/a9C3e9+EoAwMpdN2bH86GXpXbQCmUtx/pEuVLyT1Vaj5Iw10rmK0NYy7lbc/gxZZgqS2OMOU2qj76bhdv/FgAwceU70zbrMdE+HwAYHw9jptaFxLhWmOviYtAE+z5c43XrTPOYiGscxnVzG30XALB7dyiZct9994W5oubyqledXc0lVg/SHIQQQlRIc1gjfPe73wXgpdi6qJ1pAbnE7u3xqVxEKlhnc/A3S/Zi/wGznY+ixjGMNvsuRtAsumS68Yk8+c13TqNWUmoBfo2m3TAJbViNKfdvle9IGkPsA7F052erdfDTF8wjTJRjMh/9FAsuWohRRrwuE6gT9ZLGkaK/TMtKmleMTloct2OX5+a1q7T/IO/J3fLB0OfEhEcW/rvzzjvTmCuuuKI6tji5keYghBCiQi8HIYQQFTIrrWK+/vWvp+9mRsrDOz1dN56NNczUQbMS23x6B+hCdHwuLjAUlo5gm4sO0AHDY6P1YsU5vUcLeXiqN/mUPRFalVvpVC2T37zTm6YabmvVXaI5qKOZ6nJLEKM5ae6rt8DjTWClWazp9Oa16VGNYQgwAwKOttax5FAOpqxDhyyUdWkpDxTwtbLGUoJenkzok+hWVsJ+DHVurePzn78JgPWuuOyyy6pzFScX0hyEEEJUSHNYhdx115cB5F3aKMVTQqQE7iX/snopt3nnZKlx+Nw17jdWlLsYH5o0TSm6jwlZtz/wSDZ3PFCYv5HgVpa2uOb8l6KEjl/SCkEtpXg/ptRYRiuU3O3cU/mQS64J6/pWcM76ng9laDDPsRWay8qps7d+Mm2buPIPsjVSW5t3ZTzG0zHH4vzh782bN6cxe/aEfhws27G8bJrhrtizg53ktm7dGtdq58p55+bDGpei1jV05zoRv9NZfdNNN6VtmzaFY7/xjW+EOHmQ5iCEEKJCmsMq4stf/goAsw17aXh8nEXXgvRHKdgXkyPsZsYELS8NT8QwU2oiXnNYlwru5Z+ds8tTar79/wvS7HT0D3SN8hd5YG0gJZZFaf7OBx/lTmnMVa95cTjHKCmPohTstaQyTNdL82UP6+7um8O5v/ntaUzZR6IZJhrPv/R5tPpl009y8KD5AxZvvyFsm47XKGoXyxddaZPEizMxMcjOw/s+Nm0KWsT+/fsBAIcPm0ZZhuRS29myxTQPrm15eTKb08PnaWpqPPsbsGv17W9/GwBw4YUX1gcQJxzSHIQQQlRIc1hFsPgaJdXpaSuTwCQn2o9TEbbetALuNx6Lv01M1J3YmNiVEs2+YrblYRH5Qin0jh/trNY6GfsgN7u9sRz2JMt4mKjKKKMFJpRFzceX7LjroVBynJ3U3vKqM8OGhsSb/CkT9W9lMcClO2+o9p+glhTPw2sQ5f6tjnLUJvjpI4Ao4c/PhXOlBD72tVvTmGH0SyzGxEPa/r3mYKXLa22R15P+CJZTWT+zPo1hBJQV/rMe1oTPHo/HexfmC79t2BDW8YMf/AAAcNZZZ1XHEScO0hyEEEJU6OUghBCiQmalVURyjva1+aLufxDrBrkKoazPM3nv7eFvlzRGxuNvNAcNYwcz/xvX8flv/DibGzBzB4/zzn8dzCKtbm9pL7f/KH6/5aPBSUwz2WHXv4ChnvPRgfulaGbyJp83n/38bJJR30oKjHWfoqnEX8+yE1wZBuy/l6Gx3sFPE1yrqithbwaafnxSIWjqitOuXHE9AGDdOpuDJsTlmMw240xGZbc8muf27tlj55qc9gw0qGtulSZFb1HbE49l6z4VAHDPPfekMZdcckl13uK5RZqDEEKICmkOq4ht204BAOzcGerve0mZNf2XYgLUZJR4vaS6/jt3AQDWbQglEFqlKY4kMQMmoacktCg+rnMOzHf+j+/M9h9Qcm4k2tEBm4WZxvG//9/+PgBLlLv5IzenMdNR+p2NTtLDUYPIekCztEcXE+5cX+f5UezyNsyleu/kLRPaWpJ/2Rej7FDnfyvLgQDAKaeE+8kuc3v3hh4cdFD7eYcx+W3+rtDJbd6tdfqt7wFgCXNMeANMY5idDc5vlsrw14rKkFWJrSv6Vn0knObA60atZNeu3fG8ptOYb37zXgDA6153McSJgTQHIYQQFdIcVhFMVtqwIfgBfO9nSm3rYhcv2qHHv/HFNMaXQwj7B/HP+x4oBd723Z8BAPpG8hclY/oTNrh+xBQoqTFw/yUvTTNBLf7t5+ipRRRhotd98Lpqjps+EsJspxoJZnf/8PFwvPh3CneFaRFMAhwbD2v1IZz0G5Rd6zy85kfrk10m07XKeJTd8vz94BjORYl/yRVPZNe98ddfE+ey68kCe2NjLKfC/hS2PzvBbYolOSYnwjOw5MpwdNGHtbAQtBqWAwGscxxLe3Cb1zZOPTUc81vfColyF12kRLnnGmkOQgghKqQ5rCLOP//87O977703fadEl8pQd7nvADCtoIxSYuIbANz1/eBXoDTvpb8UnRMlZJMYnUZCCTuOWWEUlZO8h4yOGWPJapN0U4Jd/DslhvnyG/H7tX8ctIk7/uaObF/AJ38FSfnr/7AjbbuMkUyRVqJeuZ5Wghu/lyWu/TrK/tLjhfbmx/A+eC2lPI/U9e6y37P9v3l7ts3PT22o7GTne0hT0mci5cq6ugR6Werbax70dx0+nF8/fz0PHjwUzzE8M9/85jcBAK973esgnhukOQghhKjQy0EIIUSFzEqriCeeeBKA9XHw5gOaBPg5vOcLAHInK81KZQjrzd96uJqLzuvxzLQQPunw/MInQg0ghp0CLnT1KfRTaP7NSaJphaGtXaM2Ez+v/aO3AQBu+ZjVJGKPAYbd+h4QX/v7cB2vee1vZOugCQswMw6v39GczsnUUyScAXW4a6u/Rpko59eRQlnjWNZjmnTBCAxUODwqwk0BTE2Fez4/P5EdO78f+fw8DybVAcBoJe+94U2Rc0UoMU2a69b5hMFRNnZDDKf+7nfvT2POP/+8av3i+CHNQQghRIU0h1XE6aefBgB4/PEnAFgIIwAMYhjnKEp9k1Eyo1QJ1OGYX/jOT7kh/UZN4V1/8q5wXC/VF/vf+vGgnWTSdNFlruxdDNTO3UGjDMgKw0SLJDTAnNulFH/Nv7razu0TtwGwaqK+qisKx3FLmjbHfp7E5iV/HrN0aLfO9dfpB+GhIzkl6PXc167Hpt//QFjP7lDGYn7eEtzsnPLyKq010kk9HZPX1jvtYDZqLNQgWhqUOdtjMmBWaiR8skQINaANGywM+r777gMAXHDBBdWxxTOPNAchhBAV0hxWIXs++xEAuTRMqZW9hVv9A1j+gj2Cr3r/VQCAGVdcr5R+fQhpX4SpXvOBkHTlZcgywY2Sq19rKXH7hDdqDGnVlLwbSWilLO7HvDWu7eZYwG/usO8/kPeIKEtkeMqiermfJ+9r0UqYmy/6UrRKlYwXvSL8/txGDYgFBOlb8nOwXIUPW6WNn4e0kFrb30pq5OGuPpmOfST6uNusK4RovpNhnKM+11KTpAYxO3sojaF/5+tfDwX7Lr1UxfqOJ9IchBBCVOjlIIQQokJmpVXEP/3TPwGw6p3eKcjQQF9ZFGhU04SZbLiPNyuxCiozpDPTFZ3L/JsZws58MCzG0tnbMqeUDu6jbWvtz3WwXWjm2I6f18Us6hv/wpz3rBp61/d/CQC48twXAcjDXWnOOZrTmN+5jZ/+mqVaSEWNJcDuFeegqcablXis8rNVVbXsLwEAKzG8dRQ/eYm86YlZz9xvLjqLp9eZQ5oO8L1791Vr5HNoJjSGD9sa2ZqWobULC0vVOnj+NC/dc8830rZLLnk9xDOLNAchhBAV0hxWEZR4W2GRdArSAfmVv3sMQC5FUsJety5IZutcqCJJ2kjcb8VJwZQVU5gnJXgnRXI+rnG5IXFTwk9d65yTd1gkkiWtoLXGcu3uXPmNUrkPmaRES8f8l6MGcenvPK86ZqvnBCnDQstufIBJxl7St3Xk9bCOFgrLY09eFUKM85pXebjsikte47HWRS2Amsce1wmurPfkK64a+Tn6fRiWSkc0HdP+mvFcF2O4LCvi+jG8V7w/MzN2Ht/61rcAABdddFFjbeLpIM1BCCFEhTSHVcThL3wSgPkctm3blrbRXks/AiVLL01TsrziPVeGbY050m+NchGl/6LlHygT7VIv6kal0q6hnYzKjmtF+Kz/no6TfnY9jwtfwdUxbBcAbopd5Xbu3JmtlWU1AKvcWmoOraqsKZmvKHXhv9OO7q8Pj02tgtqVn4NJjFY5tU4qZIVU/uZDUjnfRNEZcHra+kzbesJ+W7Zsjfv6UNRRdh7+WSh9LZOTLNniq8uGc6R/oxW2y4543M+Hy3I/8cwhzUEIIUSFNIdVBKU2agfejl8mmy1EW7ePwHnPv3kvAGDz5k3ZPll0TKEdjDkpuKcUHSVUSsWuMEWSFZk8R+m4lQTXkh45fiJG8jS9C0XZDa4j63lcJM957eRtf/hWAMAn/9OnAAD7oibmE9zufPBRAMDl57ww7B+vSx7lk3eLK3s/hKUW2sWb35629bHTGi38K7EDm++9zA56gyhFD6OW4SV/RgDt27c/jB047WYlfD8cizVaUT+7VpT0qTkw2mg08r4k9tkIYw4dsq579HHQr2ERXv6eR9/RgNFTvEY2BzUo9steXqqfmXvvDb6Hiy+W7+FYkeYghBCiQi8HIYQQFTIrneQ8/PBP0veZa98fvtzy1wDykMPkTC3DRBsOVPdD+HTmGO7nnaqEDtexsh1lw5yTqqtGcwydwOG3YCJYWqID08xjNB9YNdRhtg8AXP3+UDeJ5gc6n31tpUFcB01v3hzUx2Oz5wMdn34Mr9Tt9/8cAHBFTJTzlNeT5+rDPMtWov6q8hpZuGv4zPs5dNkYJs5liYvJ5LWQHQewe1RWTB1kNbNG2TaaIn0/h43TwZRp9ah8gIGtN8xfh+1yvVzr/PxctQ46vbv5sA6aTwELl6XJ7e/+7gcAgLPPPquaSzw1pDkIIYSokOZwksOG7ACwY8cOAO0kpTeddQYA4O4fPA7AHMK+tMXnPvw5AMAf/s+h/n/q8uakt0l2LmuUthgWJSWYRObDGtnjgdDJ6aXs5NwchW2+WT2rhVKqvvK9VwAAbvur29IYzseSEEsdq6r6vhD5WC+hpvIf8bepKI1n2kXj/Eso4Zed9VrVcieu/AMAPszTQjc578GDBwAAB+InYPeD14xOYu8Q5lIZsOAdyax6Sm1ieTkPewVMYqd0zi5vS+6+8HpQ2/JaBeGxeZypKXt2qdUMYxkNOq+pQcRZ4npYwbVOkKOW5/uUiKeHNAchhBAV0hxOcs4888z0/dFHfwGgTnQD6rBQhqT6EM4ZJhlFqXGRyVeuWB/t8SyJ4X0Po6I8BP0IDH0EfP+D8HfZH9nvP9GQ2C3kcZD9fdX7LImtlOpNGnalQuJ5Ly7m5SMAYFBoJZ/+88/E/RtlK+Lf7IVxpfM9+HX7deXnE9ZhPb7NVm+VSsKXLVu2AACmnc+Ax6JfgGOXXJinhdKyd7NJ1dSu7B6HsXn5jKCdUGPgPrt376rmOOWUkCA3OWHPzKEu9ppI/qrxuMZWMl6ucfi18p6vFP2qAQvXZV8LXs+HHnoojXn1q18N8dSR5iCEEKJCmsMqIkXwRGmeUhQA3HzvPwMApiiJFWUTACu0N6LGwWSlho2c/oglt20++jpu/ugtcYq6nzCFekqfZZ9mv21YRj3BpOkr3nM5AJOcvRQ5McHOaZTrGdnktROWu0A8ju+rHOa944Y7svX7KKOVOB+1q76RsGeF7lay47TGDO6+KYy9/Pq0jQUQaZvnflNTphHSZ8AIotGXP1/NQe2kf8s7qvOgNsAIIs5lpSoMamnWb7pOUJubm6/mr0uDsNOeL6syau7vS8xTg7EGgXY/y/Ih3N+X2BC/HtIchBBCVOjlIIQQokJmpVVEMhHEv7NwviLZ6h2X/BYAc6QCZha68S+CaYLmgLfGWkOAmW9oRvChqTRfMIR1WPQhAOrwTnMytkIfl7M1+/GWBMcwVW96Ys8IOjzrxK6yvo83a93+N7dn+9F05SvH0j6WTGaNKrW2xrHss9VvgmYQ76SlI51VUBfv+NtqrR0DC6IJkdfVm46S6e4r4b4uvuk6t8ZcPhyUVW9hzu3SIU0TEGDmLTtXb8LLQ1BpSpuZsSQ23ofZ2cPZ/j6MmdCh7Z8LzstnnteTnekA4BvfCJ3jXv96dY17KkhzEEIIUSHNYRXxylf+LgDg4Sg97b7hL9O26y56GQDgrqgpUOp662t/I42544FHAAALrlIrANz2idtQcvBgSLIaDk3CnIjhi+PRmWlhq301puyKlnWki47PUaPn8lihcdCB2uofUHYn8w5UCu90PvsSD6n/Qfyb6/ABsmWXNx7wi7GcBmDXtuzM569H6UAdrfgucXTyxkSw3bur/ctyImVva8CuFTWguS98Km1j57i+Ck32/SCis/pbwUHPOzVwyZbcf/clQcuk1gmYU5naAYMg/LNDjYnnMzGxLlt7uA7huZyZYSKk7xueJ0dymx/D+/+974Xw1nPOUWjr0ZDmIIQQokKawyrkZS/7lwCA3e43Sq/XXfybANplIyaK8FQL8zQ7OJOsrBie667WKMZXzmHJa2EOllLISyHkfab9ccdjmOrtfxOk2Fb5jCvfGxLi7vxUHop69fuvTmO6VFIj/L2y4st35B3o6DvxGgD9Kkz860ofBMw3wP1aCX9lj4dRDGkFgLHiHrEL3sK8hd1yvrJER8tPk8KQi57QnlGRTAcAg6/dCgBYjtoAnxNf3I/rmPv2ndnfADB6y9vj2sI1Sv2im/6E/Br5a8XQXhZU9JrgXDwmP5mE54s2lgUI77//AQDAeee9plqHkOYghBCigTSHVci+Gz8OIO8hfdt3fgoAeMPvhlvOyBMvRV4b/RI3xYQ5SqNlRAvgE828TTeXWluaRKmx2BwmaXJNnPdoRe5u/dit1Zg7Pnl7/A1xjrFqP/MghHnviJoIYGXMe0ZGNaTYwVh+zGSzd7/fHn04V8RucWZPN2mW3ylN5yWqV7Jjt/pUT0Vpmr9Ry2tdz1Yk0mCMxwz3YT5Gofl7vnHjxmy/VILF+YI4H30NWVmVKMUz6onFE+caPgv6kKgV+OdrfDwcZyxGpvk55mOJlpXorxo/SgIl5/X3QdRIcxBCCFGhl4MQQogKmZVWIZvf/ocAgJ8+9P302/svfRsAq6S5EtX2uXssiY2q/Vs/EDqp3fWZLwMA3vaH16Qxd34qOBwZejjhqruL8CUAACAASURBVG/yt/noMGV9nlZiWFmTnyGlgA8TRbV/WZWVZpEVFwJKc9LV778qG+uxddQ1kVg3io5ohvb63hdc0Vhx7DFn6phshPIC7QQ1C/c0R3LZLY8Obn+8asxiPYbXczFWcx27/B1pW2nWohN+7Ou3pjHDoktcK2GxZbIiS3feEPajOeea94TjDu06zM0dztbNa+RDUdPxGtdhgkEDYwxpDb9701dfBA34cFtRI81BCCFEhTSHVczmzZvTd0pJLC/AcL7tLuEtlV6IUtfl7w6VT7309cZ3vAEA8NXPfQ1A7jBkaKIPSwVyCc+XfvDbfFVUQi0hk+rHcwc2w1b9GAvDzLUDL5XToU7H9OXvucJtC9I0y2gspxBI13+gCLNNUqlbP53TRwrx9fu1JO6y7EbLIe3PCQDGhrnT2I9JpUvcIsukN5Yh8fecY9h1bnklrMNXTOV0lPT9ujjv5FXvjMdmiK+NoaZg87JqsM1BWLrFd4mbnl4fx4/HNYdP7/TmfaWDnd3vvvvd+9OY888/r5pvrSLNQQghRIU0h1WML7xnPYWDhDj68o0Ain4O1CpGZQhlnSBGKXrJSdNTRf+BlLzlk8eW2Lks/E0JsyXVc97FBadtUNKO0iyl+8v+4E1pCCVrdnczydnW6qVWIC8RMigk9UGrUB7nos+BSWzev1CUpChLhnha2kUZgtpKDEu9Go4S7prm67iPnTt9DUfzi6yL9zNpMGONOaJ2xt7ReamSLluHFT3M74EfMz/PREw7V2olvFYtf5cl0XFOr1Hm2pntswGiRpqDEEKICr0chBBCVMistIph03UAePTRRwEAe/aEiksbd4WQVu8IpaNvlEw9bME5ncZQbWdNpA0brL4OzThlO8x2hnNushqNajNICo90JheO4n5Li8H80ApZpHnLnJ0Tbswom6sVQjoWTW6cf+jm4Le0Vl7HhvO95WxO51PURmqZjMpt/ng8N9670rwEmAmwZ9bxXTembQxHWHnD2+Kcdb2jbpCbhYhfh13HRm0m1oSK16MVikoH8jA51PPjhnPkVec181VZwxwMo6Z5b8KZx2xMrL80OVWdx49//GMAwMtf/nKsdaQ5CCGEqJDmsIrZsmVL+s4KmpToxqLzmRInYFJaKen72kRMVnvvvwmJTF+54e60jRJq6Wj0SVN1baW6QmjZK8GHxpoTNHxSuva1ka7942uzc2Nlzjz08sjO4XL9o4bjNI2N8w8KLQMALjv7+dlcZQVWv43n4SX+snoqgwe8pMtrXh7bO4vLhEE/Rx81uIXbPxP2j1J9liCWwlQLrcQ9JvyNwQT+uRqLVVkHUapvaQ4WqDCenXt+76lB8d6blsNDpbpcRWguUFcS5nPtHfTc9uijvwAAvOhFL8RaRZqDEEKICmkOa4RXvOK3AQCPPBJ8DwejFJpJkSzF0OVS+ezsbBpD6ZVhr63KnDwmpcGlRS/hxTkQu7yxUqcLqR0by0tseEUmSd19roFc/a+udvvniVy0gw9d9ldpz7/+f7g+bbvpL62ngl/zstMgyl4T15z/0uwahPPP+zmQVhJbWdoBsGtdanR5pdG8AxzH+vvC43Cs7wfB/g3Dsbz3tNdaeI/KZDx/XqlPx1LtAyo7Atrf9uwlX0Gh+YyPmwbDNbG6q48wnl4fqwwP8zBor52UIc7Ehzi3wrfXKtIchBBCVEhzWGM89tgvAQDTK3VpilTm4KcPh230IfzL/yaNOXDgQPhtpbbVE9MggqTZDVwk0CiPEhqkAngmaY6Kche+d8JYSsAKn9OxuN/69RY1RVv00fpRlGO/+Ne32xrjJzviUXXJZEn+dpTSFpy/TFTzkn+Z/NaK7BoV16zlTzhaT27OR8nbz5ns/5P5/tQAAPNLUMvoV2oth/dssaEtcSW8xyyz4pM0y+iksvdC2H8lOw8rgQJMxcgjRqFxDIs/+t/GimKN3i9h9yYs4LHHHgMAPP/5z8daQ5qDEEKICr0chBBCVMistMYok75aSVdU9+nIXHj4x2nMMJqYqPazSisA3PHJEE5amkZ8OCJrMTEEc5jq9tuj2BcO3Kw95yCvncOeDb6m0XgX1s0KrpyLVTjDfGEO1lTyvRoYupo3Es0iN9M5sgVoahPqE/a62ikKtJPYeI6tZDyOadUiIuZ8r+9rOa83tZTJc9z/8OhwGjMxFoMXonmO9ZO805kXZ2K8Dk1eKcx6Vv/I39c8zLaVBMf7yDBbH8TAceujY5oJkK0WsUerQ2XHC9dhYiLMtXv3nrTtlFO2VuNXI9IchBBCVEhzWGNcdNFFAIDv33cXgLZzs0xmy5ys//WfAQA9w0V/5+y0zapuDrP989DJIiEsjhl5SbcI62wIdrjqfUFj8MlWhBLlqJDmvaR780dDB7yUtNaQ2LtiHV4qfmPUGEqpsxXeyflbDmXC69EKc7VkwDDG95XgGKtUmoe/+vF0Pvsw1a4IW079NhoVT5JDuuFYp0N6KSWm2QGYYNddfGW2XyvcdlCU6vBlVSwkOZwrndDhnOJvU7nW68NUOZ+FycaOf8M64KHsb1H2KFkLrL0zFkII8SuR5rBGedW//fcAgHv//b9Nv5UJWfycnrakoSqx659+5I5aSsS1+MkR137w9wBYT2pvTy/LVVzhurRZb4R4vEaYKvdPfRji552f+lIaQ0nTOpi5vsyU8KPkf81rfyMc10njDLE8Uiip31ZK/q2e2q2SEul8isS2oyUellpKa39/rctjphBWdyvLNVJLaBUU5PzzrsPgSuxfvhiLNdKe7zUYrpElTlJSnSttQV8DtT0/PzWFUkuykhnGoUMhqXPdOh7bNBAmfG7YwCKH9IUcuXjiakWagxBCiAppDmucmWvfl77v3bsPADARe+wu3XkDgLJLW16KwUvBlPDv/FSIWqLU14pK+eJffxGAs1+7MROxo9z8nEmfZNIXhAOwnDSZukxC2dfZl0Sg8M39V7w0ztLYT0ErOHrESx51VUYE+e9lohxQF9NrjSmjpLqUVGhzcI11n+a6bAfLc3dOdSjPo1U+wzrAMQnNJHZGRy0szGdr8/3EzZ+CbD2+1EUqnxGT6PKCjrnGxDl8b3I+I/QxmO/G37t83pZmuXNnKHd/6qnbsJr5lZpD13Uf7bpuR9d1/+B+29p13Ze7rns4fm6Jv3dd1/0/Xdf9pOu6H3Zd9+rjuXghhBDHh6diVvo4gCuK3/4MwN19378MwN3xbwC4EsDL4n8fAvBfnpllCiGEeDb5lWalvu+/0XXdS4qfrwVwafz+CQBfB/C/xN//qg862He6rtvcdd0Zfd8//kwtWDyznH22haJ+/ev3ALDQ0amr3wUgV/9H94SksVaXt/FR4dAeMbyxEbIYJ1lkEpYzUTAhbZBqApmJYlCYb5IDtuFQ5rpvj70eWg5UVlpdKUwngFVa5X5557Jh9lvL9MT5SzOMN+vQ/NEKcy1NVS1TXjkvj9dKpmvds9J0Zaa4eh3JZDWqzUIMDOChFxedQzqaJ6ejY3p8vK6/xHlpBqIDeHKyNuURmkEBYCqaIhneWpo/A3knOZ6775i4efPmuMZwf+fmDse/7RlshVavRp6uQ/o0/oMfP58Xfz8TwC/cuO3xt4qu6z7Udd2DXdc9uHPXzqe5DCGEEMeDZ9oh3XqnthoIo+/7DwP4MACce845zTHi2WVdlL4oBdKR6CtjLlzyVgDA/Bc/DSAvF/GVT4aw1FKa9Q9FkmgLR6jvoMb9r4k9GnwC0nJRHiKFkjop9ItRU1hJZR5qSbeU1FshpNw2KjQRv63UCrzE7pPVPK0w05ZUf6Q+EF6CLh3RR9rX05qj1DjGfKXSIRMW49jYi4M9IACn7TX6IPRvvC5sS33DGXbre1Dn179MhgPs+rO8i7++8/EZpcbD/aanrfLrxETZCa7u253WnDSgMIcPmS479K1Wnq7m8GTXdWcAQPzcEX/fDsD31XsBgMee/vKEEEI8FzxdzeFWAB8A8H/Ez1vc73/add1nAJwPYL/8DScPW7eeAsCkLdpZF10nt/kvfgKA2c3vfPDRtI19qilpUobOehaUoZYNyZ1+hSQVN0JhKdotLefaQVjvQpwjlmAowkU9SQPxZUSKHg2UHr0UWya0tcI7S+2klYRWSq1eOyFPpUTHkcJeW2ts+TzS9Y8ffgzDVLmNWsVy70NiWe6iDtete4uXJQ1t/XX5Cn/u+bEnXOG97gid23zyGsfTn8DkzjGnAR2OiXqcY2ZmfbUOXqvVHtL6K18OXdd9GsH5vK3ruu0A/h3CS+GGrus+COBRAOyxeDuAqwD8BMBhAH90HNYshBDiOPNUopXefYRNb2qM7QH8ybEuSjw3bNq0CUBd6trbWNe/7b0AgIM3/zWAPMrHpaEBaEf5UOIfUtJtdFm76v1X40gkP0Bho7/lY7ekMWXZarOHOw0kzr9SFGMDgCvPfVGYo+gT3eJoXdp4/mVEUitKJ53Xir+eRZHCVNjQpOHy2C3fSas/dQmvzUQsN9Hq+831MFrJY9pRqSWYNkDtgtZs+9v5OgoNYnrayotTiqe2uOiKLo7HsuLsDld2fQvbJrLfrIS7Haecv0xSDN8X4hyrO4dY5TOEEEJU6OUghBCiYnXrReJXsn379vSdtfCpbtNU4RvB0zJx8w9CnMFVr3lx2nbPj0K+Smm8GGt041pZZh8CqvH2KFqIY21qoeP4zhg2S3Xfm4xSJ7fCnOTrN3WFY/uq816StpWmmdLpCxw5zLTVH6Nl6jnSXP5asUIqr1V3lPBOXqPBWF5HydO6Vi1HekkZ7mtBATbGTHDj1fHmil4RDAttWblojWJQBE1JADAZE9xYXqtfP1OtkY5jBiO0kgFToMKIpix79urqtmEfH85t5ta64utqQpqDEEKICmkOaxzv8KMoSMm978Pn7OyhNOLAgYMAzLn3jX/clbZd+8fXAgBu+6svxuMwychExPnYFS45Z1k2wfV3Zi+AVjevWz52a1xblGIbEnvqNleEifqkqTL57kvfs8T+y4/Q5c1rDkeSplvO5lKD8OGqZaVVP0eSdBvVbdO5rrQd0ZkmxSS+6GTunchPDaN0iGeJcn3hdEetwbAjX6sqbNnRrkxgDMfKw1wtOc9fz7zToL9WfNYsGKF23ped4Gyt5mzmIzI1lSdO+uqurYTF1Yg0ByGEEBXSHNYoe/bsAVBKZnnIo9XEN0mX0jclsgnXaetLn/5Str/ZeF2ht0JqXC47ywH4wse/kK/HSZhLTEgrutRlUmghjbdCORne2q0cRSovQk99OOORSi+07PmlVtDqx9BK0DtaCG0ac4RwyqMl42XjCk0hhca6MNOkaDBBblQnHnL9fD7yJLy8q5p14bPrMD+fn38rmY7zWQKiXeuyZAsPnfscwifvS6ntAMDGjRvitsW4rrpHOc+jLPmx2pDmIIQQokIvByGEEBUyK60x9u0LNfBNpa/ba9KBvLxMc0htKrFqla5N6HuvBGAOvjtiuKk3j9ABPDqKOSetqNFWkyamiSK81B9nuQidZDa0N6qwV0N5Xv770cI7OYc5zcNcCy5rt5Vd69fs9ydHqw7bqiBbOnmPZqZK1VUbJieuvx81HOPIzXK8n75yK53FDPkcveHatG1Q1EQyp3Ed9kvHtPVRcNV643Hm5sMc40Mf/kwndfhkprQ3/ZjprMvm8Jd8cpL1l8azfXIYaNDYtIpY5acnhBDi6SDNYY2we/duAF4SanUVQ/YbN/kQUEp2TBrz+y/+/fcBALd956fVNsJf6BAeFdKkn5jO66w7WlorQ2CDpO61k+Ts5prjscedlM7QVa7japcERyg9t5zPpQOX4bf+WlU9EhoOaZ4bEw39HJTmy8qp2bV6CiRnLZ3PTlvsC8fvqEgcBCz5ruu7bP8R6mCGdB/G6mtVVmPNQ4NZMRbZNh/2WyfRec0jfJ+YCF3dpqaYMGdd3srrx7X6Z4dzzM4GrYKaROv5OlqtqtWANAchhBAV0hzWCEfqtJVb4ttdyXzIYGnj9/brUkJONnLffyBKYOOsmNpIiKI0P4x2X3aoAyyckRoDfRjeNs2ksZVC8m8dx6RRl0RXVD9t9WEok8daiV0p0a7oXX20bm++7EWZ2FX6Uvy2siprdl8YchpPsZVoZz2cF6vzmBgE6ZnVWA9HWz17H3iSduRKUiwv57207Xe7nqNRGENfAX0Hhw/PoYRz+Ps5MRG+L1Wh0V5LyzvQsRzHWEPLGaV+6IhrP3IC5AMPPJC2veY1r6nWe7IizUEIIUSFNIdVzO7de6rfKCC3Il9qm3YY4/vwzt32qTAm/u2lwcnJYN/9/de/HID5Ho7WuznpL05yHxbaiU9EeusHrgEA3PmpEAlFO7rXbobjMdqKvoZx1vg3n8PERBizsBB8Bbff//O07YrYz6GUwv25ltoR52iVzyj7MbSuecufYL0Fcs3DX6vSL1FqEp5W+Y50bilRLS84BwCLsXzJUiwEyIisVre5tH7X8+HI0V91lzd7Pqi91b2bLSLL5qDPh1oK7/X8fP18dt14tn4f2FVqN+0+GdRAwudZZ70aqxFpDkIIISr0chBCCFEhs9Iqxqv9ZgYJf7fCIU1zZlggTSU21urc1/V6SpX8ivdeAQC4NVZSBaw2UnLktlqJchVxjivjcfy6r3jPFfHvupUnazwxjJE9BlrO4lbPBW928WO8eYdjjlZVNdWfiiG0raS4uiZQ7azmpw+TLddW3o/Mwd9Hk9Nybnrya7FeD3TC2zWgyaZcY8uJP3rD23hgt8a8P0fXdIzT9EZHcDied9BbNVaGvdp50NTFY5YBAx6rjVT3fCiv52g0CyB/JvhcXXjhhdWxVxPSHIQQQlRIc1jFeAdgGWrZ93RctpyjpRRqEh6roDKM0UuzC0VC2pc+cRuAwqFKSa7oudDqbkby6qSUPmMZjYm6fMbb/jBIr3d88o5sW1aVtaw4e5SEJu7nu4GV4a0c48th0AFahfYeJZS12eWtqArb0vrajtMIq6k2QmH5/dCh0LPDnPdeYmfoZziflUvD9fWlQhBLpozYta5xOflbS5Mrw6BNcu/dmPy59M5qhqfyWW3NbyVfkM2/7K7nsLhXDPn2x+M1e/DB7wEAzj33nHqyVYA0ByGEEBXSHFYxZ5xxevr+5JNPAsj9B0AufaUEs8W8h7TvsVtKdq3wztK2PtYokJZo2K+tR3G9jWURhkexKZeStpUBsTHUAniuvhd2KYVTQs4k5bT8ogd0o/NYGabaKorXKphXhqW29mefaZa0YEiqX9fyyvIR9y+1E14Xfx6b3/FHAOxaH9h/IM5hWg7vKzW6rFhiriy6/WqfhYUGT1TrSOcT/SH+0tM/Rq1krNELg9eK58guiOumLJmu9PNYWRTTtljqhNfue9/7Xtp2zjmrR4uQ5iCEEKJCmsMa4bTTTgMAPPnkDgDt0hjDYZDalpbyTleDgevkFiU5+h6yongd9w8S1TWv/Q0AwJ0PPmr7p8S2IJGxVMa7/+TdacxkjAbpC79EC27LJNX4ed0HrwMA3BZ9H5wTMI3hitgvuqUBcQwlTS9x0yZfSrZH8xm0Cr0dKRLIfy81hxUXpUONgQX0lvo4p+/whzySavyK6229sePZ9EreX9n3FmfP6LlYyoLXw/deZsG7VrQUS5vQZ0DJP9cuqPHkZS9aBe8smQ3V/oRagh/DrnnjUbugtuGTI813FLaxI5wvFVL7POyePfDAgwCA17zmXJzsSHMQQghRoZeDEEKICpmV1hinnfa8pzz2kUceAZA7sdddE8w/E3fdCCA31Uxc+U4Apm7v2bMXAHDly3+YxnzlhrsBWPIbP8cnLHQyhYPSketMNakWU+m09p3c+FkkRLGOEmBdxFo1kSzMNZgUSsey/87PVqJcy8Tijwe4bnUD1usZVuOSQ5uVZF2CWpovXpilRZps6tpKS7FG0lQjNJlz+TpahL0N5ufLCqmul0fy9tdBBCsrTFrLEwd9iDQrAtOcs359MGuxcmoYn4djtzraLa/kzn52v/P7EZqTfHVXXjde140bN8R1mOmJzmkLfPDVZY/cPfBkQ5qDEEKICmkO4oi8+MUvrn574oknAAD9G0OP4EOu8uvMYgj1tOSvKA2/5BXuCEFzSI7kKGnd+P9+Lo24/l//QThO1CAGjeQ1dnfjFh+6yG23fvwLAExjmHO9AdjJrlWagnMwdLXqcoYjO6RbDtSyT3Orz3SpifjxZX/nrhECauGyudM32z+OmXCa4ES8V+vXT2dr3rt3Xxpz6NDBOBe1JIabWpc1VmxN4cuNaqrlOXuNlMem5kCNwUv1lPTptPbJfEkbY9jsWF3lNiUsDvOkRq/lbNgwA8Dfx7BtasprF3kCpe+FXTrGT2ZWz5kIIYR4xpDmIH4tTj89JNb97Gc/AwDs3bs3bZudDUXKtm7dmu3TffXm9P3K2Cvh1m//BEC7JMTf/ue/BQD8XgxF9bbtWz4ajkWpkRoDtRUPJUMW+7s8hq0CwIEDB7LjeIm/LJjHT68lcHypOXi7NrWRMly1ZStvJtiNcl9DClt1oZNs45z6Oo/yDnd+TTPXvR9ArnlQg6NkzM5rs7OH0hjTPPLj+XOl9MwEsY0bN6ZtPDZ9JfviM+PLkfAyJh9QT43ITtV6m7PEhdcK0oUIx2HfbyfJlz4gntfBgwfdmPA5M7MhO5+ZmZk0puya19JOVgPSHIQQQlRIcxBPi5e+9KUAgCeeeDL9Ri2A0islxsFV70pjZm/9GwDAm846AwDwpe/9AoAVPANMovv0n38GALDionsosU/GY1sHMhszNxckdUrsTHTbvXt3GrMYk5vWxeicVhJcWZraj2kWuEMuDVOTKgsJ9qN631YnuFFfRL7E3VrS6dggLxjn7fyUeiemwrl6zYVROLSf8xr57nt1hZK8rIifb/OWzQCADVHyBuye0fczH9fhI6o4BzXAYSzZ4u35TKazUiN2P+iboO/CosDqJE36LKgRep8Dnxkmv83MhKgp70NplQgh55yzerrCSXMQQghRoZeDEEKICpmVxDFxwQWvTd9/8H/9ewDA6M1vP+L4wxdcDsDML5ddGswBvvLr/Bc/DcAlhl3+jrSt++XDAMwk8Pm/vCk7HgAsRNPAm191JgBg165dYYOz5kzH0M0NGzZkcwG+Wf1ytq1VR6rskeDXkRzRNJ80OqClKqqN5DEzreQO4CwUlglYRa8EOlIBM+91cV52MgvzhWPSnHTwYHDU+z4KNKlYdVWG9prpatOmYE5ihdPsHFOCYDifqWgC8udh9adYbTdfn9+fTE7aGlNvhpSQlof2+vPgcWhe8sl4DGUt64QdOjSbxvD6ccyrX716TEkeaQ5CCCEqpDmIZ4zJq0L5jLK8AJ3QALDvt84DYA4/Om19QtT8449nxx3+1Z/b92EuTb/yjCD1zc35shVB+jt0/mUAgKnoAF3/nbvSGEq/DGltla2gZHi0kgiUfsseGIA5ngdJYo1rdBpMqpgapdeJybpCaLnmLOyWPZ+jQ56OWZ+0xf0m4za//759IdmNiW7Wg9n3d67LRACWsAbUXe/y/tB0Euehn75rHs+VDvKW07fsUJh31ON3VqBlqHGtXViAQV5Cxc/H33gd+bz6/S+88AKsZqQ5CCGEqJDmIJ4xrARCkP5YAsFLZrTv0h5Pm+6ks4OPRR/D/G3B9+Bt08OiFj8lVJ+kRMl8cF/QFChh7p6zwnvWGyCsddzZz1msrewP7SXuKvSUc/r+GFN5gt7RCsaVReH8scvCe4tLJsXy/IeFPZ8F9fxxJtex/7fZz5nEyPIXlJT9GhcWco1hmIoWTlS/8TPrVrecl9agD8ZrSePJ15D3SGhpB8Nh3e2OWknZJ7qlwZR9stvJjfzkc2Ka2GoKVz0a0hyEEEJU6OUghBCiQmYl8Yzx27/9W9nfTz4Zsqe9WYlhgAy1TNuc75VVWDf9/gdQbqTj+kgN6QFg5a5Q4TVlOMf9J50DlGYcb04iZc2cVA3VZdumGj5x/a1Ma5qTShOUdzSzneXKqM62LbOwOdYziCYWmuWsD4KZ6Wgqmb87hP0eeIWFH7NXA+ei47XvW6avLs4xnc0FmCOc5hhfm4mObJ43nwHvkKYZzLKfV+Kcdf0mzsHWpGG/YDKkeZGfQ9fPgWap0kzoezVwTZyX5s9XvMJXFl4bSHMQQghRIc1BHDdSX4SLr0q/zW3fDsDq5NCx7JOVTDtgWGJd14ZjelCqNcmbSXPLX/pc3BaTyNxxKIW3wlRTQlaUUFcQJV+nOVDCpPTZqtPD86cjNmkky3UVz/6yWIG2UYU0retLnwUATDqJmcl8rIJKTcbvSy3i4HkhtHfvT35SzU9a4bK8D1RkKLl7ibsMYfWhtGXnN47ZtGlTGrMl1mRiVVgGIXgNaNOmjXE94f74hMNy/ZzL94PgvAy19udIygq6Kyu1trZWkOYghBCiQpqDOG5Yxyzf+YydwvJ+CIOBSfCDATt+5XZwwEJfKYUz7NSHuy4uBamZci0lfh9mSgm7FUJaVjalVuB9AGXZDM6f+ROoMcT1s5+BP874Fddnv/mOdOyrTZ9J8pNMeB9OkIxpY28lmPG3ffvqPgrEKpXGqqjOVl/23OD+mzdvdvuHT2p0vnyHVaXNbf3eF8V5qUFyf5az8OfPuXKfQ14pdm7ucLbmsH+uTfBeMREwrDUvmcI1//M/P5zG/OZvvgxrAWkOQgghKqQ5iONGaTMHTKKlNDo/T2naNAdKlEx484Xi6KugLZrJT0t3fjaNWReTvcbZG6DwC/j5LYLGbNOlNtHq1kYJn79RA/LnvMQyIrHf9ihqDmX3OM+Yk9i5/3SMhJqKRQK9Hb70fVDinrjynWnMjh07AAB7//6HAHI7unVXC+fMCCSv3bDEie2DeJy6tAX/SfHRY2XrC2oX1GTa58FSH6ZdLKXkP0Yt+a57+XNk2p7NS3+CUwlKkAAAIABJREFUaat5cb0wZiGucRTPYxiPbxrd/fffDwA477zzsJqR5iCEEKJCLwchhBAVMiutUXbtCvX7veWHzrjTTz/tmI69ffsvAVgiE8MTw3x50trKylz89LV8FrL1+DpBw3tuCfvTHMSkKdfQnmYpmkZoIvD1frgOHrvpSF7MK8e2+jnw2Pzs33hddRzuleoPZWalsHVxYR4lNK3QTDYTzUo+BDMlfV37fgBmavEmH1aePXTIEtOImU/C/aAD2N8PS2jr4pxhHf56MNx1fDz85k1whOYstnH1gQq8V1u2bM3+9uat0pTnkyNpGjLzXvj98OH91RrL6qy59bPPfqPz3ZunuP+9994LALj44ourc10NSHMQQghRIc1hjUGNgXgJkVLazp2hc9qpp247prno8PNhkZTwyqQxL5lR+ktOynu+kLZ1jSSvcB4mKVPCtA5kY9nfgDl1+en3P3w4hEHSgVl2BQsL5kcMoXxdSPQbLNuYsTjfYtyP1UjNtenXH6TqSecYp5OcTuZ117wbALB+vYV3btzITnalxGza2v79QXou+zH48x4MqFVRs7N/GrZsDdI8S41Qc/EaHZMZTesyTSiF+0ZNYSx1XrObvm/f/uw8yu53AHDgQBhDzcOv0dYd1kGNyDuSj9SPwneYowZVaq++dwXh/y8PPfRQtT8d+5s3h0S/rfEankxIcxBCCFEhzWGNsW3bKdnfTz65I31niOHi4pE7nz0VeBxKmKeeemraRqmvtBEPh77Xby6ZTrteDT5xyuOl2LIon9XoNw2m9Cd4rYDSb1lKwtu/qV2wKN9KLNUB1++aZTKoFTBc1PsMUuexqCVNuBBQrqlMHGRoK2Caz3KaK3zSz+DP0ezpdV/mspSED0XdNM6wUF5XnoddT2qg/PShyfPRn8JkQBYJHHO9m+krsXNeqY5TaosMXwVMsqcfw0KVW/JvXtwvCz+OhyyT6ObnTevgc1QVj4Q9h/Zch20HD5q/xyf2nchIcxBCCFEhzWGN46Xh0v7/eOrlbJIVu4j99Kc/A2DlmwHg9NPPAGASZZlYBQCnnBJsr3v37suO5wvgrawE6W9hIZa4mDf7NaU0rymUlNFGVdc2R6t8RqkxtLq10f5OSXd4+fXZ3PnxEI9DjcSXChnLjufXyEtSdoTzNnJG4DBBbP/+oDHs3bunWgfLTfh+3dyfn1z/Rhf9ZQUEWbBuLNvHnxOPveTKi1NjoA+JGtX8kt1Xzkc/DyOrfKIb19ZKOCwLMpqvwRcgnGieq2d5mdFJeVdD//8Je5LT55F3pAvXiP42XrMjabwnMtIchBBCVOjlIIQQokJmpTWON5VQhedvZnIwMwhNE1u2bIljvZMwr6Xfqq1EExOdpIcO5bVwwjpiH4XoiC1r+4Rteacwr7an+kLxmGVnN/+9rMDqz7esAJt1JYvXahj/Fxp97daw9st+L43h/GbGiR3pXG0kOlDTnM7UsRjr/Fh4ZW5y8Wvav59musNx7Xac0ZdvDGu98PJ4nJY5ZTnbf9s2C2Mu+1LwPLqurnhKC8vBgwfTNh4z3eP6sUj3uu/zKrve9GOBAXmVV6BORmw5xmkGMid1H9dqznsek07/VgVZC7eNJkHnvOd+TE5MYciuSu3JgjQHIYQQFdIc1iis1Oml+7KbVytpipIUJUsvmaHoO8Bj++OwHAETsyid+6qolCJTJ7hY1RQA9t8VpGBKz61wQh6TTk46r70USglzfr4uW8H9zbk4qPbnuVUSoXPQU4pmaDCvnde26ECen5/L1uW/U9vinIe/8Mk0hmtKoZvxc8odZyYmzR3u61BW3n7eR2pJhw6Z5M91z8VrNXeY1VTNEcvkPTrWGWjgoTbA++v7MfDc+OxxPV7bo+ZRJif67ymZMIX42j2bT5pYXmnVJ2BaNVhW/43n5Z4vOrbLSriA3Ss+z4PBkSvwnuhIcxBCCFEhzWHN0hWfJkFRWmPBtTxkkWGALYk/D3mkYOeLsFFzmI126H0xpNUfx/oQT8Y5TWpbfv3V4ZgMR/zmFwHkSVzUSvjJXsU+Cc7KIyzFNddaQZkYNnnVu9J3SrEM5aX0mIfkhu/sNMbEKtrgAZPQKdX63hWnnRYKIG7dekpcTyxf4RLt1kV7t10rZOcFAMOdQUtceuwxAMDePdZHwRL+kK2RocaAXT8WDOR19VI9JWYez4fL8lrx2JSmp9bVnfk4luGi3j/De9aS+Pms8RqVRRfDesPaqHVyH/rPAGB6en08Trj3G2KxQ594yG3UwHwvba7XNJla+z5ZkOYghBCiQprDGuOxx0JiW160LECJn1LnnihhWgcus8FSevMSKiVlSniUonySEKV32sHnDtf9jCmJcbfDcyZpL8Zjp8Jsl7w1rP0rN7l1rGTroKTrNQFKqGW5BqBOWEr2fDemvFaMWPFJW7TJMyKplZi1aVPow3z66eG6+lIj1BxMGmUUWV1SgteMUrkfwzWlBDNXyoHSNBPbeD6+z/TMTNQKqpIWdl95bOth7X1Ay9n4mZm8Q58/D/oheM6+fzhLr3AuXz6D58jnk5qLv698HqjJ0W/mu81xXmqyfPZXVkyDYb9zzpn7TuifKq+VopWEEEKsAvRyEEIIUSGz0hrhkUceBeBV+boLFs0nBw4EJylV6rxiaa4uMwQTqBOPqMYzPDDMl3dgo8PPO2lHdCayIuachZtyjTyPxbjG7pJr0hiaSIbRPLR4+w0AclPJxJXvzI7jHaiISXipR8EXPh1+bjibd+8O/THowPWVSmkGYdgwr+M21yfjpS99KQDgec97HoC8VhXNW5zLkvDMnFPWfUrhv868RfOJVWy1MNXHH+c1YRhyWL9PtON1sMqredVdoFWnqE6OpMlmOjqvx1xSoe8rEo6XJyAC5rSnOcmHsnJNdPDTfOlNT6lu1KYQ4szr6+9ZGXBBfGgun92y4yDgw6DDun0y4cmGNAchhBAV0hzWCJSkWCqACWJ04AHm6KM2YMlwrqTDYquPWYDOTUqNlKh8ohlDFDdvDo5YSljegXq0KqpleOnSYp6o5qGTePpt7y3WZ+fRKo0BMCQ3lua48vpqPWXyWd8HqZahkIBJjQxz5VwveMEL0pjnP//5AMwB6q81pdeyt0GrR0EtefvKr+GY7Eb2/Oefkbax7AbLXZgwbtIwexFQUm49F/zO65gnRyLbfzyFgvoEzLyqKvsnzPlghMW8Kqzff3Exr8RbVuYFgM1bwjO3bip3DvtSI4MBw65ZlXWyGkONeMOGjdlYwJ6xk1ljINIchBBCVEhzWCNQCv3lL38JwGzLvrQFe0dT6rM+BL7+P7ex54HZa2kTts5lQbLyhd54TEpWGzeGBKvZWS8hBmkvSapujgWWQJjIe0n3LlGP0utc1IBY0sGHqFKr4FwjJ+mOlnPfSSsklzAkltfX+07KEhv0KzBE1a+J18yHDVMD4zW2fgauAGBR2oMSrk/4432h1vXiF784bTt0KNjSf/7znwMwqdgnPtr5IDu216TKft1ek+F+qZBh/PQSPK8V15POx9n+LbEt77MRDoA473I8j6Ctrls37YbkGi3X7DVbXmueG4+Xl8iYydbsQ2FP5qS3EmkOQgghKvRyEEIIUSGz0irG2nwCj8W6OuyVwKxdX8uejmiaXGgqaTl7WVnUO0fNnJS3T/T7W0+C4AD1Ya6E5gILoXStHmMNoeWlvOWmNzHQVEQzCsf6sF2eY6vlJcNjy74D3slKE0lqOclKo662P9e/bVuojcQaSa0KsqUpDwB42fhbqz+G9TjgjnVdqLLXgW+x+i/+xW8AsDpa27cHs6M3XdF0xvvaqlJL0wqXSFMWYHWfaPJiVrx/Lrh+BhhY5rk32UQnc5/f3/wc8/aeWah23H+qm8r28VVyeY05P81kvt8IqwtYKKytY926zVgtSHMQQghRIc1hFUMHM2CS0JlnngnAkpxyZ1yQhChRlZ2/AJOaKEX6iqsMi92wIdZNmjty3f29e0PdJoZXbty4IY3xCVjhuCa1rSywgf1iNidgUizPdWGB3eLo7HQd7SbDmPUx9NSHuQ6jw5OVOK0jnKt0Sq1kJaxjPibYTbo6O2XCIbUUL5VbhVH2fDBJmcqA1fChJrXi9s81D+ulkYYkqbzs2QBYEuJpp50OAHjiiSfiOduYsuued3bbmFxr9GP4PHFeai6Lrm6S9c4IC7fnylQpBk8wQKLrTOvk+BQuGzU4L/HzfnAuaq1eOzGNh9csP4dwrnlocV6Xa/X8kyrNQQghRMXqec2JBiZ1zcwECZHSJyVDH55pJQhY7z5Icb7XgnU3C/u3qndax66FuI/vQT0R54r256hdnHKKJQ098eSTAKx65ote9CI3P8sbhOMwzHRp2eQc632dhxV66W8hakwMc81CELt8fKrK2tCABl3e9Y4aEWA2bkqsW2ISlvdvcP1W/sInj0U7fNHLepSF7eY+BvqA8rIRS9mYVpXdF74wJOZt374dAPDTn/5XlNSJbn21jWtrVVw1235erTbsn2sFC6n6bu1nsbnsWk0XGqCFIZvmYD0WuF/422vPVh2Wmkd4PnyotfWZDhqQ78GxmpDmIIQQokKawyriwQe/BwA499xzAOQJQBMTQaKiNO7LAZDDMYqENfRpk/X2Y0pyFNpaNlZKZtYzwduW8yStVmLZ+iiR7Y9rzfwBUSIdT/0CGOVic3CNk1PhOIyO8ZoEp6Wk7yXdskTHMNrRvXbB73UfAZNmDx4IkWA743Wgfd/buNlljZ3U/LXisagNDIeU2G1tKYKnKC3h/RpjY3k/CH8enMMikeq+38NhHkk1GOT2+PKcArax7M7G5yzXPBgdxHWwv0Tdoa/sVR6ORS0vrHtmw7pqjem5iNoEExb9cajJTaR7FhI5Z2et8N4rX/m7WAtIcxBCCFGhl4MQQogKmZVOchh6CJia/t3vfhcA8MIXmiP3yejkpQOZavyc65XAmvU0q6RWnAMzK9EcVDsZTaU3Zze32Bhq8DQ9MfHOh1eycuu2badmY+NZZudKE1grzHRpMa/46h3jdGq2kqWsrk7u0PZmENZyGhYJf94Exjl47Wky2bRpYxrDWkKc35tz2NuB14PXmrV9ADNnleG/uVkpNzX5XgU0tfH6zy+ULU0tpNfalNb1g8ow11aPAwuJ7bKxYTyyMWba66sxNGH5a8XWnTTd0TzkTYTW42Eh/s0112Oskm4YS1PtWkKagxBCiAppDic5vlokw+4OHAjSeF4xNWgIqUxBlOa8o40S+uRknizknawmabcqUh6O+5XlKnq3/1Qcy+qZdbIT1z0zEyRkX6YhrYnaRJefe77u3AHrtRyeB6VRL4USq4Jal1Dg+mcXZ7Nje+cmnZmcf9++4Pz2WgqvP++Pn2N2NlwrXmM6Uhdc8hjDh8vAAH9fLIigdiTv3LkTALB7956wjqhZ+hIbPH/uTw1ibMxOhMfk/fTz835aWZM6Qc00QPbXYEiphYny2lIr8AmY62fCtaZjv1VNlVoz18pggLzfSB5YUHe4WztIcxBCCFEhzeEkZ/9+K5zH3sD0I3g7tBWoY4et2tZPKZRJPWWZAKDVnczWQgmRPgrO5W261DgofdJm7m3UXJPZhE3C9P2sAWAi2p/nnV/CbOy578RjiW2Ia63nt7ITeTE3f0yeTyvxjudIXw6P44sVWlG7sGYvxTLximulVOx7QPM3lh/heigV+7VRS2HxQwB4/PHgs9q9e1fcthCP6/ogdPQ95cXtWqHBlLj9fZqcDGuk/Z/n2ipbwevBpDbvl+Azx3OkZglYMmOZuOm1Xj6f1DJ57E2b6mJ5vA+XXHJJtW2tIM1BCCFEhTSHkxzvMzhwYD8Ak2q95kB/AqN6DsX9vGRFaYsSbkvCo23YkpZMsqMkRwnRNAAbU5Y+aJVHoDRfSuX+WIPUc7jPxoYxeaLc2ChG0LjjcDzPw+9frp/2fK9BLSzEwn1Rci97F4fxfdx/IjtnRmh5Wv2hqcEN4/xMYPT3lb/t2BHOldE6u3btruagNExNBgCW4np5TN5ff8/La8RtCwuue95oOTtX70PiMcuILK9dUJqnJkn/ir/3qaheHDvl+p9TyzTtdVDNwaTOUgPxfgmWkrf+0GsXaQ5CCCEq9HIQQghRIbPSSQprAuXNweiMC2rygQPmrKZpIJmhorZOJ7TfnyYOmmfyaqThk+YDv81MVLmpyNfHsY5ndG7S2WlyCo9Nx7YPWaSJZzCIdZOi8z2r/5RMTjEckV29XEIUTRNmMrH18lhM/jLThpk4aIKjicQSBu08aGJiWCjNOt7pTBMHTSY+dJPz2nrCcZZcEhvNJjQpsl4Qwz0Bu+f79+/LjhfGhfOgWYzXwdd4qjvRsdqsdxbnFWi9ubIMTDDHtE8+C5PQxGOhxnUFW+vZMO72z6vRLi6Ga0yzH2D3jM9V2a8DAE45JXTre8UrXoG1jjQHIYQQFdIcTjLogKTE7PsHlE45L8Gb1JdLo61kpeXlfIyX3HlMSvA+IYtrovRLqZT9iQFfkoLroXPQZqCTemkpD78Nxw4S5caNIVSTEu+ePXvSGK53sXCe+zIclF6HjX4OdI7WDmRbZBlSa1Ks1y5YdoKO9drpTMGY18qvwzS//H748hmD8XBsagw7djyZHQ+oQ3l9+PHc3OFsja3KreZIZq+EcAAfSmp9JBay4wGmCVLyp3bg+4Tw2Ssr4nqoOfH58iVCeG/5yWPTQR/m5W95cqJfqw9XXutIcxBCCFEhzeEEZu/efdVvFmYZJDSf7ESJjFKtt22bNB8+zVZv8oHV3UfcduSeC5S2cvt1OPbmzZuyMd5+zXkptVEaXXad3CiFUmLPe0/QrxLmet7znhePZ2PYSY4Ss7fjEx+WGn+pxli5hrzkRziPsDa7Rvk+Hmo+ptHVpUI4ppW4aP26605wDL2ktkTthJqEX7/1XrY1pn7OyeeQaymA3SPe37JbWziPvAChf2Y2xN4KTGzjvfOag5X2YIJdOI/cr5CHFPumebyO7LZH7aClnVg5FIbP2vPRKqOyVpHmIIQQokKawwlMXiguSDe0n1OK9BEf69ezdzNLY9Slma1Hbt6dK3zPE9Nsn3ptXM+WLVvTb7RB07ZLDcbbfTndwYMH4hrZK7i2w5uN3ubl+D17gq+FErIvKbEYJdrxokigT4Kj5mJSvV1Huw65pOnvh7/u4Xh1X2PfX9vjz5VSPCOK8rITpcYT1u+1C0rcFskTztmX5bZkxLoMtmkM1AQZdeXLrHfFZziO10ypRPDcLBnOlRxPWiqj4uzMymipdM8aWqvduzo5kpoQo5R8D2nOS02WY3L/SONhX6NIcxBCCFGhl4MQQoiKX2lW6rruowCuAbCj7/vfib/97wD+OwA747D/re/72+O2/xXABxFiFP+nvu+/dBzWvSbw5oOpqdg/IJofHnnkEQB5OCErc9Lk5Hsc0MRkjsagPvvwzrLeP8d6px7DKDmXN31Y0ly+/8aNVqeG6zcH7lhch29on4fZ+nBZhhrSfLNjR3gEZ129oJJkokBthmiZL8oErJbzneaoFTqAZ+v5OYYVRy1RrmW6YH8Ml8xX9IiwukFmMio72vGa+ZBMhv3yGtOkB5g5pzxnfz/4XJQ9J/z1sOSzvKItYKay8tj++eaYqXVMVGPXOltHGSZLc5X/zUxOTLaszabWq6GuOnzqqadCBJ6K5vBxAFc0fv+/+74/O/7HF8NvA3gXgFfEff5z13VjjX2FEEKcwPxKzaHv+290XfeSp3i8awF8pu/7BQA/67ruJwDOA3Df017hGoK9n+nA9Y5LSp/sJlZ2dAOs/n9LGi6roVKr8GGe1js67E+Jf/Nmq3fPcFk6Ur3UZQ7kLvvMJe5cemw7e3PtxjukGQbJ8EyTSm0dK0lqzh2p/bCuyso1532qEfcrS2LY/qOihzQ1Kt8rgWuzznj1faHEbWVBfPkNlubI1+i7vvFaWWhtHnbaOh+f+Fj6e8v74/H7+fMBrP8Dz9VXp2XZDtNuhtUYYuVE4phh3ZPbQmp9gAHnpQYTPs888/luvXkPjm3bTqnmF8ax+Bz+tOu6H3Zd99Gu67bE384E8As3Znv8raLrug91Xfdg13UP7ty1szVECCHEc8TTDWX9LwD+A4Io9R8A/J8A/hhlxbVAHYsGoO/7DwP4MACce845zTFrjbLngpciKZExKYhSve/kZuGUfdy/DkfkHExI8kl0SVpbpvRG27Lv5MaidtHmnkmYdR/lcgylP/5mYa8mITI81fpU153kmIBlIZt1PwZKxa0yCVxjslE7zWOs8A2krneoNQ8ekpqYv+bDopgebexe2+N43nPvc+C14bnxnH3ymd3r/L74nhGWvJf3sPDnVoawtgoIWgE9lsMwvwav+fQ0+yj4vt+L2XmXPghP2TMiK7zH5LlJls+wa2Uh0gfjccI6zjjj9DSG19Mnfooj87SuUt/3T/Z9v9IHXf4vEExHQNAUXuiGvgDAY8e2RCGEEM82T+vl0HXdGe7P3wPwD/H7rQDe1XXdZNd1LwXwMgD3H9sShRBCPNs8lVDWTwO4FMC2ruu2A/h3AC7tuu5sBJPRzwH89wDQ9/2Puq67AcA/IhR9/5O+71Ws5CkTdGOq8V5tprmBYZ10fLYyi4l3slLNp4pvTmfLXqZTlfNzjK9vUztVa1MNz4POXp8pzBaVnIMmJDrc/W/MYPVtHGkGYVglTWA+M7msm5TCIZ3Rc2WFzsnw97gzXTG8lmY2rq1lBim3dd6sxFpAg7CN2bverDNbtGtdXPTnEY8T12ZOV++kzTO8zVxmY7hGmlO8s9rG51nhbPsJ2DXiGmnWajmt+U9KXbvKP48MEfZ1vcJ+69aFa5RCWjNTIGsiBXOWz8LmfBMT4Znhs+NvGc9161aFqz4Vnkq00rsbP3/kKOP/I4D/eCyLEkII8dyi2konAH/3dz8A4B3ArOljkhXDVMsQUF8/6fDhIKFTMvTO0bLCKTUAXx+HdZKY9EZnt5dUKciZRNYKD+2z9Tz55I405tAhag6xRtRiGDvnqogyZJIai3e6W3hrXgsoT3ZC9huvldcuuD+dql7LKrvDUSr115payHA8r0a65MYsx45p5XX0moOFq+Zht/6Y1ALGUtjseLU/NUmu2fd8mC0S9HzyGLU0Kn28Hn4d1LLoSOZ19I51/saQVi+xl5po3+fXHgC2bdsGwLRESvl5F0Lec2pSdZ+PrVtD4CSrsnotqezBIY6O3PZCCCEqpDmcAJx99lkAgB/+8IcATGKktgDU3chKOzDgO57VyUWUmqzbW5C6duwwqZ7hrUzCM1v3ijtOLgV6yY5zUBp97LEQqLZr1640Zm4+74NAm/KkK9ExPsy7qrUkVGpZljxW9x+wDnJ18pl1m8t9H57BWEyoWqg1KGo1g26QbfPXfnFxJVs/NQ/f2a68jr7KLTUWPgeUgllGwkNbvfkuTNuyvt/jcT22jWspw0y9v2ss9eTOfS5+jPWTqKvc8vpb8lrepwLwfp5Sc6n7l/M6tpIjGTZM/47XgNgfWjw1pDkIIYSokOZwAvHKV74SAPDQQ9+vttEPUHaq8hIaJUPamNkfGGiVggiwLwJg0ubpp4dI5VNP3ZbNHebLS2V5qX7v3tDHmT6GAwf2AwAWnKQ7YgmIYZ40NnBS/Qo7jR2qez1Y34I8OsefliWW5ZJubkfPC7NlWsVYbu9u9YemhrCw0GfbvHRdFjDcvDlIs0MX/TUfO+Olrm/u+s7P5Zogc99akVnUgCyBsj5X07bM1m8+IJamoL9pobF/Xj7Dr4PnyMio4dCeU0YOlb4KH61E31f5nOa9Fsaz3/yzyGeX14pjpC08faQ5CCGEqNDLQQghRIXMSicgDOfzjsOyaijNSb5uf9ny0WrzmNpvzlqGeZp8wNo/27eH2ol79waT06ZN1o9h69ZT4vzhePv370/bHnvscQDm3OUc3jQwHM8fuVRPyvVsSKayoi8EYCYuO588FNTvT0d6Gb4L1EladGiGY+W9Hpaio78V0mswFNV+YTtNczpHx667l0z2YgjsoYPW46CETl9vTuE1rpMBW9cjrN+HL7MmFIMZmLDYup409dAE56vD0hHcqmPFZ4wOaK7Rr4Ow1wTNW1P+GR7krUC9838umudowjr99NOqY4tfD2kOQgghKqQ5nID81m+9HABw//0PpN9YhcQ6ZLEPgDkJKaFRuvaSnVV8ZaeuOpyQWggd2qzDf+CAdQ7buTMvr+4d0pQ62R2NJSmGWfXM3HFLCXNmZn21DpNUbT5KzZRQzQFZn2uqptrnfSbCsXNp3l8rag4peS1qHll4ZjzUQiH9eierzcskvFjt1nXooxbBaqI+zJVQY7Fr56vc5udIiduvtQwi8BoQHfy8NjxnHwRALc20A5ZiseNYHwYmMPrrOSjG5P02wjmxfEeukvlAgaSRslSGe/aZOOnLsIhjQ5qDEEKICmkOJzQ+LDKXtK2DmUmRtJsznJHlK/z+lDCt/r8PRwyPA3tFUKr05Rf27dsfV5Z3QgNMYxhVn3XyGbUDajk+XJZQ0G8lwZn9Oi/yF77nPgbaob003CoNks6jKHBnUq3tX/WDiOvw5Roo4fc9O7DFNTufA5MbW0X9WsleJSahUwObqdZhkn6tbfJeU1uiD8nfc94b+sJ4Xq3EwXIsUGt76Z41ughSS6O2kl+XvEvd5IwVjeS8vpCkODakOQghhKiQ5nAC05L8KRFSMvPRSpTIpqdNaiOMfBofp425LlhX2rYpnWdRPjhyYtkwPk4rHSVmrsskRNqbuX6u1ReDo4TL6BxfGqOVHAXk5SJ4HShNbtgwU+3D6BYmCuZlsHNtgklxrYgq2uF5aC8x8/pZRFje0c1/5/7eZ0GtwLSlcB28VjATpWcrWJcXPwzfcz9GQ0lJx2Z0kJ+DPcTp5+JzOTFRlw7nNZ9wfhVqKrwerZ7cvOdaSQSBAAAZHUlEQVT0GZT9yIFcSy1hBNNZZ511xDHi10OagxBCiAq9HIQQQlTIrHQCwuqsPgmOar91cgvqO80jfgxVcW8esU5fdBKzCqeNoUmCDj92nfPhgQupdk54dJYa3lILuczNIfnamFjGZvVmxqCJYN++vdX8bpbs2K3QyfJ8/Do4xqqAtsJt4zVL4a4tUwkTvNiDw68jryzKsd7kUjrdW93VeO9YNZc1rwALXeX8VofJ1bNKYcPh71Y9rpTYlhLefPgrk94YRBD+9klsY2PRWTzKEw/9+sfGluN5rIvr8LWa8l4N5syva1XxuvLcAeCCC14L8cwizUEIIUSFNIcTEFZn/epXv5p+owRV9k724ZV0TtPJmjuCWSYhlyx9CQLbtpjtv+g0GK6DDmAfZkpnJssc9F0Md3WSKh3PXCulaO945G+bNm2K52glJdjxzKRhSrVequexGPqYV2Atz7vcRimWkvJwWIfLUlNJGtRS7swP6841uTIB0GOSv2kOPBRDlBmmSs0KMIc4Q2J5X+acVH84hqXyfOhg9vNSO1uO8/t/GKwScB7i6+/r0lIMlR7VVW55/vy0nuIWcJH6exRVg/1xqFUwwODiiy+GOH5IcxBCCFEhzeEExkuqhIIU6+17uy3t+JTKmfwF1F3aKP15yb/UGJYbHeWoHSwUIYcAMD+Xd6sbb2gFtCWXSXy+fwBtypQUvaRbdjqjFOpDWcua/tYX2WShMmw3C5mMSVt5N7PchzNM/SjykGBvq+e8lLx5rU1yti559B35dTAsdEvsizy9jrZ6WxfP+2AsmsgkMmpYgViIMdr6vZuI15PPTBl267fxHrUS9lCEOHsNiH4I+jPKMOSwjnz/MnQbsOshjeHZQZqDEEKICmkOJzAzrjyAlVsO0tvhw7PZ30CdbMQuXwAwO3sojo82e0p/TmBjghvtxisN7YIS82S0g8+7aCmOo6TJMhELozraqCwE6M+DJR1YjM9HpVAa5/78e66xDitEuC7+nRegA4ADBw7G87L/FbounBulV4t2sv3oc2DSmtnM62JyVg77cJzTypxTW7MkOJuDJdcnJ9jBbTwe1xeji13/kkZYa2Je+vbrijNm50OtKdf2WBY8+hxW6ueCfa451mutfEbmYrmMqagB9e482AFvIvpFWgUIWyVWxPFDmoMQQogKvRyEEEJUyKx0AvPa156fvj/00PcBmNmAZhCfdEWzA8NUaXIAgIVovhkVHeW8+aBjxdRknqrNMKmLVzQV+N4EZVczVoD1VgxW+2RFzvEhTSVmRti3j53CguPWmyg2bAimNpqKrKaQyTk09fhkMyBPzGII6NTUIkpSB7jUQQ7ZJ2DXnaYOmlz8NaepjCae3bv3xL9tTpp8yn4IgJlfLPms7hBoHf3Cerx5rRzD3hO+RtEoJa2FMbwuvkNgCnOlySqawrzpykxw9XUoa13RdOSfr9KMxPvsa1Up0e3ZRZqDEEKICmkOJwmvfvWrAAD33XcfACs74bHwwbzcAWASfx+FNTpyW6UtKD1SQvUSM6VIbnNCLEZjed8DX2mVLK/koawMrfXaAZCHqfpSEJS6rbdALrGGeVlZlI7ciWwsYJJ+K6zSwlyjdhOl+bxHwXi2HnbL82ulI3rfvtBRz3ok1BVTmdi2aZOF7fI3Jr9Rmp+fN1XMkhJzp7+/9gweoMbQqsTLe0YNxF9PniOd1evXT2frC2cUjjkbQ2q9lkbtaFiEsrb6Y3AsS4W87nUKW32ukOYghBCiQprDScYFF1wAAHjggdBf2vd8MCkw1uaf8v6Idm8Ar12YxM/QxyC9+US7wSBIyPv31wldlKzZjYt/e+mc2g01kPmYrOWLuHGtlNh9yCR7LVMKp4TqQ0gZAmzlL8L+e/fuTWPKLma+cB99FhRsraieaVmlj4GSu18rNQbORcm7lSi3PmoH41lf5Px/Tx7Hd2njb3VxQqed0M80xuPa/H4+fx5ZEhtDkhfyc/Ta3qDLS4748GOeB7WLVhc+Pit89qQxPPdIcxBCCFGhl4MQQogKmZVOUlqtFq0tJ8NdzXxgYZDs40BPsplBmJFL6JjesMGbhYIpYDGGq3pzDsNaGfJoIYyWoTsY5CGL3J+1gQBg376QQcxaQDPOfEETR1lV1Ts3re5/Lvvs32+ZybwO5oT3VV0n4rbwN80p3nRD8wuvA8/Zm66YlW7rYK0nux4bogmOIb3+ntEhTtNRy3TFrGvWUjKnr507f2vVjLJM9dws5fdfKeph0byWZVoXfn1vbuR1TGGyzIZ2LW4ZunrppZdCnBhIcxBCCFEhzeEk5ZxzzgEA3H239XxIncuKsEDAHH5WBTVIn15StQbwQdRbSM5iL1V2cb8wdnbWNIHRKIyfnKjDbIkl74U1UkL1iWGHY52eOTayL5ymfk08r4mJOhmQWgGP7aNWrdtdTBicc8mAdK5GaX5iIu+FAVi/BFZBpUOdknw4x7w7XFmRFrDqtoN1g7jN7gc1hLLGk3cW0yFvmtCgGmPfx+PfNn8Kce7ZhyHtlcYw6c26EMa19nbNlxfDOvbs2R3+dtdq48bQl4MapIWy1nWoxImDNAchhBAV0hxOcrx2QC2gleBF6ZlVQCm1dZ09ApR0aeumduGleiZ2UdL0tnqGaFKypKTppUKziXMf2vxN26A2QLs1fRBhjXmyFvEJWdu2nZrNRT/A/HyddMUyHnMHzUZOSZtr4nG8XZ4hxGXZh1ZHOf6WQjp7ux68thyztGz+hMmJXNKej1pObs/PExd5nEPOh0P/DJ8LX/KE2lHqZR3nZwmUcI6jeMzZ7Hj+2bPOhOEZOOWUTWnbunhveP6supuVbukkp55o6I4IIYSokOZwknPxxRel71/72tcAeBu3SaiUGllagklf3jbMQneUeCnYlf0AACvw5gVlStaWYDcex/hyEaN4bErVjID5/9u7/1g967OO45+r57Sl7WQtQudsG2Gm0ZVFVsKPAsXMjm0FG7o/NIEsrlES/iGRmRkFSUz8T6PZdMnELENhhmxOhq5ZFCWVxIBpheHKj3VIdcvoVtcObQsi5ZzTyz/u73Xu731fz6Eta89zH/p+JSfPee7nfp7ner49T6/vr/v7bf8UoxUQz4tZP5J0/HgsN9FdcK++sCxq83FufMb6IrZ2wbymhvzqK+17tK2s2J0t3qNe3K9THNWe1vWOct3xlZmZPOYQr90fX6jNLgQ44uKxqMW3F/FZ53M1n6N7YdvMK7l/f0lvnKhuLUbrMPbXiDGL/gV0zWct4yyTedHGJbMtodg9r41jy5YPpPMxXrQcAAAJyQEAkNCt9DayYkV39c563aTZtfSXxKb3TbfD4cOHZ8+Jgc7+Kpp1N0Z0iRyfHRxtp27GoOTi3nr9dZdRDJrHY/HaMzPtYG/EH6t/1l59tVlbKaZwtvsHtHHEsbqrqX7P5rHmPZYta97jx86vtrwsA6/9wea6GyVeOwbdR+3H0J9W2nalta8Z/x7RGxVlKEmvlTWU4vx4ft0t1b/grz9Q37xmd7prt7txpvNYG3vbPRZdePHvumhRXs+qnQadp1HHqrLx9xTlesMNN6RYMRy0HAAACS2Ht5GrrrrylM89dOiQpO6Ux/i9ncIaS0O0tcr+NMbJajXTmenuRVoxbXbFirY2HTXMdlpnHG9bJ+1Obs39eiA4asGxMunRo8fiWemcqJVHrHVtuL+PwfJqr4a2hl+moE50B5abzxgXjy0rn2civUfU0GOwOl5vulr6I6aMRgukbqX1a/qxOm49aB3xR5nFuXULJmr+Mf12aqpdATcGm2N5lRgkrqeWxkByq7sCax1HtFDjVpI+/OEPCQsPLQcAQELL4Ry1evVqSd0pizE9NaaOtn3TbW24rekv6txK0olSw46lJPr7GEhtTTVqmu24Rj0+ELXX5t6yTq1+UeexGCepp7tGzTr6tiPGene0qKFHq6hebiJq/7EMSDyvbsHEa/enufYXBGwem+g8Vl/EFktT9PdKaD5H93XiPUctMtgubtfd/U6SFvWm0tZjBdGqWtK74K5unUz0WkVLyh4U9bIm0VLZtm1b/+NjgaLlAABIaDmc49auXTv7e/TfR4sharoxdtAci9p43ms4RG00asjHyu5tUlvr7S8p0d31rLsXdl2DjmXFT5x4ZyfWes/iqH3He03PjoXUs666F8hNTddjHk0NOfrN66U5ZiOcidlS8TqjZ/00rxezhZrbWIZCaltX8fz6s0YNPz5HtAbq8YT+0uPt7neT1TmxB3QsJNiOIURLI1oX/cUbJWlRr7UWz1+1qt3v+vrrr0+fGwsbLQcAQEJyAAAkdCth1qWXbpAkPfnkk5Kk11/Pa/DEGj5t91B90Vd3XZ+4H4OtUtvFFMfiIrR66mMMQEfXT72fRHTN9KeJdtYr6nXHhO7FY7EWUhlY76ybFIPtsUZUvhgw4mjXYSo7w029Ub1OrIk0VT7H/6XyiO6kGDSPaadN/N1VbtuLyOpVbrsXGsZU1OnpPDX4vGWlW2qynlocK/F6N/6qe+v8dzarqMYkho0b3y+8/dFyAAAktByQXHllczHdE0/8i6TuPgZRw4xabT3lMWrK7e5seTXXY8eavRliB7R6V7IQNfX2grl6V7PuAHjc70wB7a2Q2g7s1stnxPTM5v6JeupmOdbuPREtojaOaB3FbUzfnapaDrMXvU13LwocVfOPeOolPqL84kLDiKezy1vsozC7s14T60T1Wfuti1F7cLRLljQrr1577bXCuY2WAwAgoeWAObW7xbV1iImJbn9+VYmtpkouKY81D0ZttBb97tOzC+e10zujxh07hi1d2l7Q1U7LbP50Y+pm3Y8fffsx5XNqanF5nbZ1ENNtR+2fEDX2WDAuWjd1C2q6t1TIKO200JhmGstf5AUA47F6mupEfMZSrtECqC8+iziiHBeX59QXDi5fvqJ8nua2/vfYsGHDnPHj3EbLAQCQ0HLAnK655hpJ0u7de2aP1YvwSd0dxKKmH33bL7/8sqTucg1Ra42lvqPm3a3Ad2vzdculXXzu9fLasfR2W1OO92+XuM4XqMXy5tGCiNjr14p++CNHjkjqtk6OV8uOSO2+zIsm6llP5f1n8gyi/jmxJEVnhlUphmg5RYumLs94frSktmzZkt4DeCtoOQAAEpIDACChWwkntWnT1enY889/U1J36uaxY80FbtF9EheI1Su/9ncsi8Heycm2nhJrGUX3Tt2VFRd59buT6img/feK27hgTmq7w+ruqBADv21s3cHv5nOXVV3LQPB0uT9RrUAbe0TE68R017rr6NZbb5EkPfLIP0hqp9ZKbRfc5s2bU4zA2UbLAQCQ0HLAWxJLbezdu3f2WEz1jFVHo8ZftxxicDmmicb0ysnJ+sKsuOgs9lxop4tG7T9aCjGgfN557QV37S5tsWJrrNLa1upjCmtMHY1afRN/0wK6+urcYjpbtm79yLy9F3AqaDkAABJaDviRXHbZZad1/uOPPyGpnV66dGmz4F49PTOWmWh3Lmtr/LGfQzvdtbs/s9SOEbTLRTRjBVu2/MJpxQqcy2g5AAASkgMAIKFbCfNq8+brxh0CgFNAywEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJAcAAAJyQEAkJw0OZjZOjN7zMz2mdnzZnZnOX6BmT1qZi+W21XluJnZZ8xsv5k9Y2aXn+0PAQA4s06l5TAt6ZPu/l5JmyTdYWYbJN0laZe7r5e0q9yXpBslrS8/t0u694xHDQA4q06aHNz9oLs/XX5/RdI+SWskbZf0QDntAUkfLb9vl/QFb+yWtNLM3n3GIwcAnDWnNeZgZhdL2ihpj6R3uftBqUkgklaX09ZIeql62oFyrP9at5vZU2b21OEfHj79yAEAZ80pJwcze4ekr0j6hLsfe7NTRxzzdMD9c+5+hbtfcdGFF51qGACAeXBKycHMFqtJDA+6+8Pl8A+iu6jcHirHD0haVz19raTvn5lwAQDz4VRmK5mk+yTtc/dPVQ/tlLSj/L5D0ler4x8vs5Y2SToa3U8AgIVh8hTOuU7Sr0h61sy+UY79jqTfl/RlM7tN0ncl/XJ57O8k3SRpv6TXJP3qGY0YAHDWnTQ5uPvjGj2OIEkfHHG+S7rjR4wLADBGXCENAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAhOQAAEhIDgCAxNx93DHIzA5L+l9JPxx3LG/BhVp4cRPz/FmIcRPz/BhCzD/l7heNemAQyUGSzOwpd79i3HGcroUYNzHPn4UYNzHPj6HHTLcSACAhOQAAkiElh8+NO4C3aCHGTczzZyHGTczzY9AxD2bMAQAwHENqOQAABoLkAABIBpEczGyrmb1gZvvN7K5xxzOKma0zs8fMbJ+ZPW9md5bjF5jZo2b2YrldNe5Y+8xswsz+zcy+Vu5fYmZ7Ssx/ZWZLxh1jn5mtNLOHzOxbpcyvGXpZm9lvlL+N58zsi2Z23hDL2sz+3MwOmdlz1bGRZWuNz5Tv5jNmdvmAYv7D8vfxjJn9jZmtrB67u8T8gpl9ZCgxV4/9ppm5mV1Y7g+inGtjTw5mNiHps5JulLRB0q1mtmG8UY00LemT7v5eSZsk3VHivEvSLndfL2lXuT80d0raV93/A0mfLjH/j6TbxhLVm/sTSY+4+89KukxN/IMtazNbI+nXJV3h7u+TNCHpFg2zrO+XtLV3bK6yvVHS+vJzu6R75ynGvvuVY35U0vvc/eck/bukuyWpfC9vkXRpec6flv9n5tv9yjHLzNZJ+pCk71aHh1LOs8aeHCRdJWm/u/+nu78h6UuSto85psTdD7r70+X3V9T8Z7VGTawPlNMekPTR8UQ4mpmtlfSLkj5f7pukLZIeKqcMMebzJf28pPskyd3fcPcjGnhZS5qUtMzMJiUtl3RQAyxrd/9nSf/dOzxX2W6X9AVv7Ja00szePT+RtkbF7O7/6O7T5e5uSWvL79slfcndj7v7tyXtV/P/zLyao5wl6dOSfktSPRtoEOVcG0JyWCPpper+gXJssMzsYkkbJe2R9C53Pyg1CUTS6vFFNtIfq/lDPFHu/7ikI9WXaojl/R5JhyX9RekO+7yZrdCAy9rdvyfpj9TUBg9KOirp6xp+WYe5ynahfD9/TdLfl98HG7OZ3Szpe+6+t/fQ4GIeQnKwEccGO7/WzN4h6SuSPuHux8Ydz5sxs22SDrn71+vDI04dWnlPSrpc0r3uvlHNuluD6UIapfTRb5d0iaSflLRCTVdB39DK+mQG//diZveo6fZ9MA6NOG3sMZvZckn3SPrdUQ+PODbWmIeQHA5IWlfdXyvp+2OK5U2Z2WI1ieFBd3+4HP5BNP/K7aFxxTfCdZJuNrPvqOmu26KmJbGydH1IwyzvA5IOuPuecv8hNcliyGV9g6Rvu/thd5+S9LCkazX8sg5zle2gv59mtkPSNkkf8/airaHG/NNqKg97y3dyraSnzewnNMCYh5AcnpS0vszqWKJmIGnnmGNKSl/9fZL2ufunqod2StpRft8h6avzHdtc3P1ud1/r7herKdd/cvePSXpM0i+V0wYVsyS5+39JesnMfqYc+qCkb2rAZa2mO2mTmS0vfysR86DLujJX2e6U9PEym2aTpKPR/TRuZrZV0m9LutndX6se2inpFjNbamaXqBnk/ddxxFhz92fdfbW7X1y+kwckXV7+3odXzu4+9h9JN6mZbfAfku4ZdzxzxLhZTTPvGUnfKD83qenD3yXpxXJ7wbhjnSP+D0j6Wvn9PWq+LPsl/bWkpeOOb0S875f0VCnvv5W0auhlLen3JH1L0nOS/lLS0iGWtaQvqhkXmVLzH9Rtc5Wtmu6Oz5bv5rNqZmMNJeb9avrp4/v4Z9X595SYX5B041Bi7j3+HUkXDqmc6x+WzwAAJEPoVgIADAzJAQCQkBwAAAnJAQCQkBwAAAnJAQCQkBwAAMn/A+DOQzlMfBxDAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"plt.figure(figsize=(20, 10))\n",
"plt.imshow(images[0, :, 120, :, 0], cmap='Greys')\n",
"plt.imshow(images[0, :, 120, :, -1], cmap='Reds', alpha=0.5)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x216949bde10>"
]
},
"metadata": {},
"execution_count": 35
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 1440x720 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<!-- Created with matplotlib (https://matplotlib.org/) -->\r\n<svg height=\"576.212344pt\" version=\"1.1\" viewBox=\"0 0 389.2975 576.212344\" width=\"389.2975pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <defs>\r\n <style type=\"text/css\">\r\n*{stroke-linecap:butt;stroke-linejoin:round;}\r\n </style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 576.212344 \r\nL 389.2975 576.212344 \r\nL 389.2975 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 33.2875 552.334219 \r\nL 382.0975 552.334219 \r\nL 382.0975 8.734219 \r\nL 33.2875 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pa2c7aec638)\">\r\n <image height=\"544\" id=\"image75da1f98d6\" transform=\"scale(1 -1)translate(0 -544)\" width=\"349\" x=\"33\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAAV0AAAIgCAYAAAAm3Lo1AAAABHNCSVQICAgIfAhkiAAAIABJREFUeJzt3elv5Pdx5/Ei2SSb9zHkzHBuzeiWbTmR7DjZxDZyAbZiBMjmSR5kn2SBPEk2/4zzJFkE2Yf7JAvsJruJkrUN2JEjx7JsWbaOuTQ3j+F9Nclm9z4I9kF9quAZK5oajeb9evZrfKfZ3aRKjapfVfV02wddAwCU6H3YLwAAHicEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAoRNAFgEIEXQAo1HjYLwCPvr39/fDY4MDAQ3glwMcf33QBoBBBFwAKEXQBoBA53UfQ3bt3f+a1mdny8rK7fvPNN8OZ5lDTXfc3+sOZdrsdHltcWnTXe3sxp9vb0+Ouf/GlXwxnnn/+BXc9NjYazvT19bnrbqcbznS7/rHR5Hmag83wGPAw8E0XAAoRdAGgEEEXAAoRdAGgEIW0j5mD9oG7fv/9i+HM2z/+sbtuNOKvcX5+3l3vJw0Ma+tr7npiYiKc0UKWmdndJSnkLcdC3om5E+762gfXwhktwA01Y7Hr7Z+87a4X5hfCmdZey103m0PhzO7Ojrs+f+FCOHP8+HF3/alPvRDOTE1Nu+tjx46GMxTt8LPwTRcAChF0AaAQQRcAChF0AaAQhbSPmX/5l9f99Xe/G870SLfX0FAsHG1ubbnrS5cuhTOzMzPu+uhsLArt7e+Fx/YPfLGvtdsKZwZkylhPb08489Zbb7nr4eHhcGZw0D+PPq9ZLOStrqyGM/o+suLf+Ni4u84++6757rfe3lhoPHLkSHjs6NFZd/3SSy+HM889+6x/PePj4QwefXzTBYBCBF0AKETQBYBC5HQfouWVlfDYxfffd9eaQzQza7V8fnJndzecWVzwTQSnT50KZ6aP+Bv9e3rj/4O78cdbt9Nx1/0DcTpZ9phqS254c2MjnBk76ZssJqemwplDeT27yeextOgno21uboYznUP/PI3+e7+HrHlkrxVz3PPzd9z1xYux6UU/6xMn5sKZV175HXf9wvPP3/M14uOFb7oAUIigCwCFCLoAUIigCwCFKKQVWt9Yd9ff+uY3w5ktaWpotw/DmbU1Px1se3srnJk54hsfjskELTOzgwM/5Wt1NRb2ssaHu7IKaHZ2Npzp6fH/P8+aCIZHRtz10tJSOLOw4AtgWXPE+PiYf96kyUJ1up3w2M6OL8D1JI0hPeabPAaTyWjZtDT9zLKGlgEp3GUFub/8i79w1y+99FI489VXXnHXR6anwxk8PHzTBYBCBF0AKETQBYBCPd32QXL7O35ef/M//sZdZ5saNM964+aNcEZv0F9JGijekwYKzc2amT3zjB+eMjoa15Lra1xbjYNidAOFmVmj35cC9GeZJbnXpMtiQRo43nvvvXCmfehXwGfNCPfT1HB46HPjOkjHzKx9IOvme+KQnlbL532zHHPWUKL/Tl+zWWxOyTZ5aC5YV92bxQaS06djY8wf/uF/8v8m+Vl4MPimCwCFCLoAUIigCwCFCLoAUIjmiA/hYrKF4datW+56bHQsnLly5Yq7bg7de1V3VhTSm+j12sysOTjorvuTNe3aiJEVze6H/iyzuD3h8pXL4YwWCbPCkTYfLN+NGx9abd/EsL8Xmxr65TPqb8TPTH++NkKYmd2RaWEb68lktGTjg27lyCa6aQVuR9bGm8VGmKwgp7/X7O/jv/31X7vrP/uzP4uvBw8E33QBoBBBFwAKEXQBoBA53Q/htddeC4/t7flGg243bibQG+SH9uPQk/FxySvGtKLtSc4yG56iTQTbSX5wUbYpDCWDYqaTYSl9ko/cSLYwnDlzxl2PjMTmjNNyJmtY6O/3j2WNIPN3fC76suTOzZImiyTHPTPjB/dkuVDdSqG/d7M8fz425nP8mmNOJb98bYbImjO06SXbfDwgeXgdomRmNjk5ee/XiJ8b33QBoBBBFwAKEXQBoBBBFwAKUUi7D9rUsCJbAMzMOh0/xWppaTGc0aKLFqTMYnErmzKmRbJsTfv7F/0ksqwZoCmNB+NJc8Kxo0fDY3NzfjV4NvnruGyqyJo8tKEka2rQ9epZYU+bGA7a7XDmkqw8z5ostAD29DPPhDMnZCW8NiKYmXU6sWHhfoqf2lSRrbG/u+Rf9+ZWLGLqRLXJiVgQO5TP6K/+6q/CmT/6z3/krifGmUT2UeCbLgAUIugCQCGCLgAUIqcr1tbXw2Nvvvmmu95NtrSOy83vR6aPhDPzsikh29SwsekHqGQDTTTXl23s1U27U7JNwMxs9qhvBjgxdyKcyXKo2iBw586dcGZJcqb3M3BH8+JmZgf7B+66fXAQzmhO+9TJk+GM/vx33nknnNFhNjq0xyw2kGRDejY24hAcHW6UDcXR15htNdZ8dfa719eUbTFZkb89zTmbmf3lX/5Xd/2nf/In4cxgMuwIPxvfdAGgEEEXAAoRdAGgEEEXAApRSBNZcUsLZ3Nzx8OZ8TFfGGntxQLHiRO+qWA6KW61pKBx7dq1cEYLUFo0M4sNC42kkDUy7P/dYDMWRS5djhsfdra33XXWjKCNH9lz6w36m8m0Mi0C9fTGyVt9ff69ZY0HE5O+uHTs2LFwRlfC/zQptn32s5911yeTop02J5iZdTu+2NdN9rTrpK+h4fg+hqShRT9DM7ORUf971cl1Zsl0suT16FS8V199NZz52te+Fh7Dz8Y3XQAoRNAFgEIEXQAoRE5XZM0An/n0p911tg1Yc23Zzea9vT7POjoatyloPk63v5rFfKkOhTGLOd12kvvb0tysDKAxi40QZmbtA/9cO8mZYcmrapND9u+ym/jXpdHgfobiZNuJe/vuve2iLblYvTYz+6E0ymTNEdk2h9U1XyvIhgRpTjfL1WvzTLsdX6PK8r5b8jnq34JZ3NKRbSfWJo8vf+lL93w9jzu+6QJAIYIuABQi6AJAIYIuABTq6bYP4l3Rj7GsGeEb3/yGu84KJToNLNseoMWKbKrW9rYvVpw6dSqc0eLNT95+O5zRKVJZkUpviM8KezodyyyuRc82YGzLe81+/oFMDMsaKNZl6lv2PHstXxTqTV5P9jtTC7K1Yy+ZJqeyxpD7KeRlBbCWFBbTCV6ygn0weV+6Xl7XtpvFzz5bCa9T1maTLSJ65r/86Z+GM/D4pgsAhQi6AFCIoAsAhR7r5oi9JD/47rvvhsd0FsjmZmxY0CEwelO/mVmP5NZmks0Ev/PKK+5amyXM4kCVY8diru073/6Ou776wQfhjN6gn+Z9E4MDPteYNWfcT6FAf162WVebTHqSfK3SoUFmZnv7/rFkvosdlyE4mhc3i599NtwmayIY7vdbIA4OYkOJyjaU6O8s+8x04M9o0mShm0TOX7gQzgxInjfbOq1bn7MtIro9+nHHN10AKETQBYBCBF0AKETQBYBCj3UhbX5+Pjx27HjcKKDFiuXl5XBG12VnTQWrq36K1HPPPx/OdLq6YSAcCdPKZmdnw5kvf/nL7nrv1X+45+vJ1qSPT8RV4ftyY73eaG9mth3Wq8dimxZ8shv0deV5VrjSJobhkbi6fHPDTxXb2IqFTp3o1hyMv0P9WVlxKZsgphO7tMHEzGx4yH/+20lBTjdOZGviVfswNnBosTFtBJGflU090wLyojSYmJmNJP9uPFlB/7jgmy4AFCLoAkAhgi4AFHqsc7pTk5PhsUYj5uNUlgvWYTHZ0BUdzHL16pVwZkGe+9Of+XQ4kw2mUZNy8/uJE3FrbX/D51Cz5802YGg+UofSmJn1D/jn1oFAZjE3rDfjm8UcZpYvVeuygcHMbHvH5x6z57mfbRv6vnTLr1k+XOeg7d+rDjbKfl6W426ELc/xfWjTidYAzMy2ZHPGpWQbiubzZ47MhDOa980aUxaXYp6XnC4AoARBFwAKEXQBoBBBFwAKPdaFtCyZP9iMN8TrlP/RsbFw5uhR36CwsrKSPI8vlLR24w3pPeYnkb3x/TfCmVOnT7vrM3JtFieaaSNC9nqyyWhZMWlM3r9uPDCLN/ZnWzJ0lftAsilB/122yl1/VrZyXItJ2TYFLUBlBbGdXf+zdOKaWSyamcXX3e3GwqI2Y2RT8NR60oygU71Onz4TX8/BvYtt2ngxlPy3cfbcWXc9ORlX0mdbMu5IwThr8NGi4ScF33QBoBBBFwAKEXQBoBBBFwAKPdaFtEzWqTQ9Pe2uL1w4H87cvu3XlOztxSKIrmBvJFO9dB1N9nquXr3qrpeWlsKZkydO+J8tHUhmsQMtm5i1sxOLZLoCfvnu3XBGC4k6Pc0sL3ipXSnSZSuFdOV4NtVKV8I3+u/9p69r083MpiZ9p182cS57r9o5NjISu//0vWWr7fWx0dFY1NXnyT6zaelYzN6rFs6yz3Vx0f/tdTtvhzOnTp0Kj+m0uKzQOzkRi3KfBHzTBYBCBF0AKETQBYBC5HRFdkP2mOQ+n3ryqXDm+9//vruempoOZ3Qi00bSjDAl+ePshvSwljze5x/yvFmTg24CaLVi/rabbHx460c/ctdZM4Dmq7Ofvy/PvZnknVU2vU3zg7pu3cyskzQjqJlZP0Ury6druvZ4sl48W3muq8mzPLxOVMt+sfq56vS07HmuXL4cziyM+teouWqzmCvX2oZZ3JiSNQVlq+y1npD9DZPTBQD8uxF0AaAQQRcAChF0AaAQhbQPYTJZ86OFiCfOnQtndJX7jevXw5khKWZNJJPQ9EbyjfVYkNMJWVkjxn5Ywx0LUNmN9bpmZzdZFZ4V11Rbnidb0z7Y9FO8enuS7wlZFUY0m/4zO37sWDjTkPU4w8Pxhv2zZ/xUrRMn4xqkbNLW2ppfafSv3/teOPPtb3/bXevnnD2W9GGEB7NmDZ16dvPmzXBGC63ZWqbjx4+766zYdvvWrfDYrEzle/3118MZnY6mBe1HFd90AaAQQRcAChF0AaAQOd0PIbtp/itf+Yq7vnX7djgzNuZzUseSvOKm5H0PkzynNjHoxoHsNWo++d9ejx+WcuVKXAmveT2zmELNXmOjz/9p6cYFs/i6s40cTdkmkeV9W3t+A0f2Xn/lV37FXT/xxBPhjDY1ZENYBuX1ZHlXfe9mZjOyheG3f/u3w5nXXnvNXR8kuXKVpbN1eE22uUG3bWR/05rzzxLI2bAjpY0QZmYLC37jhW67MDP74Q9/6K5ffvnlcCZrHvq445suABQi6AJAIYIuABQi6AJAIQppH0LWaHD06FF3ffHixXBGbxzPChw6RStrTlBhOpXFQkn2mrWBYmMzNllkz6031g9IU4GZ2W7LF7fGkg0HOtWr24k/K5tOpjqHvrj2wgsvhDO/9PnPu+ts3XuQvHedVjY4GNe0Z79XLXhlBUEtgGXTyrRwl/196O8nLQhKAUpXspuZ9ffH9xZ+lvx+dNOHWb7ufmbG/+5D0c7MFmW9/Pz8nXDmxJzfkKKFzo8jvukCQCGCLgAUIugCQCFyug/IiZMnwmM3bt5w17Ozs+GM3qSebXPQXNvdZCOt3pCu21/N4vYCzfGambWSXFv/gM/hag7RzGxWcnZZ40NoYkhyqPrvstyfbjjIhuLcXfY38evgGrO4gaLdibnZ/oZ/77rFwyxudDaLv9d/+qf/G87o55hurpBcsL5mM7Ou/Pzs96rborPNGq1dn5c/SBpBVNaYkv38PclFZ4NyNF+e5cr18yenCwBwCLoAUIigCwCFCLoAUIhC2gMykayPfv55f9N+dtP6e++9666zaf1aPJlKNlk0h/zN72tra+HMlatX3bU2GZiZbW7FtehapNOfZWZ2dMq//9W1uIa7v+GLHtlEMzv0N98Pycpvs/h56KQ2M7O//z9/765/93d/N5zRBpeMNmtoUdHMrLc3FsDefecdd/2tb30rnNFGh6wolBXOlDZVZK+xXxpasg0YWhTbTSbF7Wz7x7KV8FlzhBYJm8m0MP08lqRZwsxsRP4edPuHmdlw8t/Zw8Q3XQAoRNAFgEIEXQAoRE73ARkZidPydbNvlp87f/68u842/erN9zvJhoG7d33jw+VLl8OZzQ3/3NmW4yzv3HPoc20TuzHvPLziz4wnA3f2Wv7fHW6vhDP7Y/4zmzwZmxqOzvl8ZDZ05eL777vrr//518MZzbl/9sUXw5lJaTIZT5o+lldis8qr//iP7jobVKNNBNl2i7d/8ra7zjYWtyUPrk0OZrHRoZM0gjx54YK7nl9YCGd6JA2eNTAszM/f8+dnudiJCf/3mDXY6CCnrHmGnC4APMYIugBQiKALAIUIugBQiELaAzKYTFbSQsDKSiwc6QQxXZNuFidmpT9LGhiy5zl1+rT87Pjn0L8bmyOOdH3RY+rEhXBGm0N0k4WZ2dqqb5hYTqaltRd8EWY5KeYsTfkJVd2xOLFKi1RHpo+EM1ps0wYCM7NnJvxN/BdXY9PHTWk6MTO7veIbDXRamJnZuSfOueusweZTL3zKXWdNBZcuXXLXWXOETudaX4vFUC3knUwaKLQYnDXzDJ07Fx5bk3O3bt2Kzy2NKPv7sUimn+PZs7HQ+nHDN10AKETQBYBCBF0AKEROt5DO/cjyX/1ys/dwMuClx/wTaf7WzGyw6YelXBmOecatbT+cJFncYCcHYz5wZMTftN5Omjzu3vV556wRZDv8/PgC9L0uLcWhJ/sNn9fsbcUNwjrMJ7sZ//jcnLueTHKq53/5l/3zJrnZ2//77+JrnH/dv8a++H1nSnLTzWYceKO/6+xz1Vz9ejLsSIfpHDkSc9xqZzsOs9HmhEYjDvvJtkXr32fWwKHbgLOml0af/PeSDE3SIUlZDaQS33QBoBBBFwAKEXQBoBBBFwAKUUh7QLLV3GtyA3oyUD9M+hpJCgOTU/7M9lYscFy8eNFd60QxM7POfWwhWNyJWxga0tSRruaWN5dNK9OGjWzyVtd8cW06aWrYHvGFkv1u8l1Cajn3s4Gh046vZ/79n7jruWc/Hc5cOB+bRb773X/xz50U4HRTw/vvvxef+8KT7jor9s3M+M8om0Sm2y10eppZLKx2kkJnr0y8m5qMz3PQjn8fusp+eyD+DeuEvazQ+gu/8AvuenQsKSo/5MKZ4psuABQi6AJAIYIuABQip/uA6LZTM7Njsm022zqgN3ffz9T7bJjNggyGyW7G75dcl+bnzMzWh+I2ia19f7N9fzfm7CYPfD40+zx0a2/2PjSnnW01HtjyufLNw9gcsS3pwIHp4/HMtn89t97/aTjT/cDnIntX49CimSTPqs0H2XAfHfqizQFmZiPD/vPItn1MTmhdIOY5jx/37z/7WxyX9zF3PH5mmmc9aMfPfizJs7YP/Llr16+HM/q6f+PXfz157vi6P+74pgsAhQi6AFCIoAsAhQi6AFCIQtoDotOXMn3JRKbmYNwE8GF072MNd7a6XWUFuF65sX2wPxYztpf8xoeNzbiBIiuuKZ0yNjgYb3TXSWxDPfEz1KLd1k4syA31+t/ZrmzoMDNblNecTbWa3o2f63NP+i0M/5xsDdFNGn1JYVO3WWQNNlkBTo3IZ5ZtMdHiWk/yetrSGJNNvNtIpuk1pUCcFQSfefppd/0oFs0yfNMFgEIEXQAoRNAFgELkdAvFKfsf7uNfldzfP7/2z+HM3pYfFpLlb3Xoyu5KzAV21uJN/ENyQ/xyK+aLh6QZoJnkA4eHfF4xy09qw8b+fmzEmJdGkOZg3Lig24DHk82yjYYfgrOXDErR4T43kpv6sw0Lkyf8NofJydhAoYOL2kmTx9LSkruemZ0NZ/T96+djFptnxsfHw5npI36ThW5pMDPbl8+jnQy3yeoU2vSSDUSan7/jrr/2O18LZ7LX/XHHN10AKETQBYBCBF0AKETQBYBCFNI+5rKp+6ty034rKdyMTfpC1hOnT4Qzox3/3BtJQawxdzQ8NtH0BbC7i0vhzMahnzKWbYWYmPBFkGwzgBbSsuKjbgtYvhubGnR9d09StTuUwmLWvNFq+QLcZtL0kTWCDA/4z+zJJ58KZ9544/vuWtfGm5ntSOOFNlSYmZ046X/X/clndl0KgH3JmWMyVUwbIcxi4WxjI753S2pdna5/b9nfx7j8ffzDq/8Qznzu5c+563PnzsUf9jHDN10AKETQBYBCBF0AKETQBYBCFNIeonay2kQLCqtrsVByZ8F3jk0emQlnWht+itbYndhZdmPHF5c+93RcHZ4VkxZX/cSuk6fjv+vc9VOrRnpjB9jeoS/CZMUtLa5lnUs62Woi6VLS9ebbSfFRV83s78XXrCvhs1Xu2SqeoXHf3XXs1JlwRle3f3Dtg3Cmt8d/T9KCmFks7ul7N4uribIuuj15/91uLOzdueO7xrK/l8Pk71x/j3Nzc+GMPldWWPzud7/rrimkAQAcgi4AFCLoAkAhcroPSDvJ9a3L+nCd0GSW3Njfic8zsuVzhs3JmNO9du2Su769F28+nxv2059Gzp0OZ/qS9d1PyQ3xnWSC2eSIbwZ464OYezwy7KdhHfbE5oj5eb+BQqd8mZk1m/I+km0OeibNPcrvbH19I5wJDRxJQ8dEsoJ9f9fnUK9evRrOzMrEsKOzsTFFP4/M8or/+2i3499Qb69//1ne9/q1a+46a6Dodvz7b+3HBpv+sf7wmH5GWX1jYd5PQssaYx6FHK7imy4AFCLoAkAhgi4AFCLoAkChnm77IFYC8O92N5l0tS6rqPVmfLM4yalnKzZHXH/zDXe9txULWdcWfRGo1Ul+zVIEyiY9vfzFz4XHdB1M/0AslBxeu+mu7+7E97oo61jGx5PnkeJWNtVL15IfkVVBZrEAl71XXWmkk8myM1lzRPZ7XZT1OLpyycysRwqAU0ePhTOrXV8Aa+3Hn6XT0rIpY+FnJ40p+rlqY8i/nZE1SMma9EZ//L3quXR6nDS9PPVUnMz2la9+1V0PJiuWPm74pgsAhQi6AFCIoAsAhWiOeECym801t9VJbqzvk00JC3fi87Qk19jfjf/v7L2Pm/jV7FhshDjYjA0Chys+H3q4mmycaPjc4+RoHEIzP+RzmH2NONBEmxomJ6fCmTUZCpTlYjX3mt2MPzzsGzqyXKSuct/ejvn0w+34OxuTITzDSQPHnmzuaC0thjMdyWl3ktX2vcfPuutslbv+Oejvyyx+ZvfTUKKbLczMZoZj844+14DUCczMjsvmiunp6XDmUcjhKr7pAkAhgi4AFCLoAkAhgi4AFKKQ9oBMTk6Gx9Y3fFEqK0x05cb29f1YXNJJVwuL8Ub77UN/pj8pOGjhZmUnFqCGr94Jj2kRZiVpvNDnHh2Lmwlme30RZmQ0TufSz+PDNjXoZzaYFG503XsnaXxohW0S8b1nN/qPjfpmgKzgpO9Vi29msbCYNVnsSKPDYTJlTP/2dCOFWSz0NpKi3ZC8nrTY1YyfdVM2R2gjxL+d8c+dFZ735O/hUSis8U0XAAoRdAGgEEEXAAqR031ARpPBH609n+fMco8m+bjevvj/xZVl/++Ono+bVDdurITHlN78Pxxnnti1tdgcobnPicGYR9uV/GRrIz7PigzKae7GfO1hr8/jZU0Nmg/Mhrd05PXoplszs5UV/5llWyr0vWc/a3CwGR7bk9+95kLNYmNMNkwna9hQh9t+sFLfcMwN6+vW3KiZ2ZnTfpPIzGxscmg2fW42y6l2ki3CO1I/mEpqICobpvMo5HAV33QBoBBBFwAKEXQBoBBBFwAKUUh7QBpJ48PMjF+xfevmzXCm3fWFopHhOI2qIVOjdhfWwxm9+T0ryhwb94WJMy8+E84cri6Hx9657NeAt1pxytik3BC/fRiLKW25If+gHQtX/bImPqxAt1gky5oTdGvHXrKSvisFn6xop8+tWxrMzMaSG/21qaPZvHdBbDf5XHulAJY1FbSl+LqbfGa6oUQnrJmZHT3mN1dkxT/9PLKGn6nxOBlufMz//Gz7yNSUb7TY3IpbQx5FfNMFgEIEXQAoRNAFgELkdAtpnnck2R6gucf11djkcLDvh6Ws9sZfow5PyW7i1zzv4W4cSjNy4mR47LMyiOXdH7wbzqxLzjTbW7G9L5uPD+NgFN2SkeV0NfeaNT7czxaEvb2De57RQTm6MdcsH8wyMuJzpq3WfbzGZMCM/vwsn97TKw02ye8+5PyT/PX8HT/sKHuvmtPVPLCZ2XgyuGdiwg83yhabDMtQnOy/l0cR33QBoBBBFwAKEXQBoBBBFwAKUUh7iLRoZmb27ru+KNVOGgbGjvqbzYf34v87F6UolFUqVqWYc+SD2KwxOB6nP/UM+aLQU08cD2duzK/5n7UTCz4bsk58bSvARmKiAAASBklEQVQWl44c80WYbDJb732s89aCT1aAGkimpSmdapVt5NAippnZgRSq0i0IMolMJ86ZJQ0TyZlmRwqkSeOBSRFzJ/lcV2W1/fh43OwxJcWuTLbdQrdCzB2Pk/K02Hf27Nlw5lHEN10AKETQBYBCBF0AKERO9yG6+s6Pw2NbN66568HDeNO63iTe6sQzfW2fV5y0mGdck//nXlmLeb3RZKPAgNwk35PcEP/krB/uc/PtS+GMbtadT/K+w6uSi23H1zg07oe+ZANnNO97Pw6S964bFgaSnK4OkzFLBg5l3QD3QfOczSR/3ZLXuLq6Fs5ojns0aTxoyxbhiaTJ4cRJ3zyT5bOz7Sf9/f5zGx+Lzz13wud5h+4jf/wo4JsuABQi6AJAIYIuABQi6AJAIQpphW68/1N3vfn+O+FMQ1eXJxsfhmUV9WZfvEG+v9//u42trXBm7z5qOT9946fhsU+d9UWy3uOxOaJXGijGTs+GM/0b/jVl2y0urfjV7SOHsUilhbSsaKbPPZJsStBpZX3JpgSVNWvcz8aJrIGjb8dPj+t04i9IC3ed5DPrk7+hwcH4XhsN/xllxS7drrG9E6fQtVr+/U9PT4czjb4kzEghMZtgpr8znbD2qOKbLgAUIugCQCGCLgAUIqdbSDfCZrnHfcl1dSfiwJnGtuQekw0D6iDJqw1KnrG3N+aG9QZ5M7Mff7Dorp+dinm81q5vdOgMxHzcsxd8LviGPK+Z2cKGf6+rhzHPeazl87y7nZ1wRjdnZA0MPfI5xk8jPk+WFtffc/bY+vpGOKPbiPeT16i/6+xvqCv59N52/PvQ13OwH3/W5KT/29tK6gIL8wvuOtuIMTcXh9loLjwb/vTss8+Gxz4J+KYLAIUIugBQiKALAIUIugBQiELaA3Lz1q3w2I2rV9y1rhc3M2vMHnXXI8lkp+62LzgNNmORSgss2Y32WhTqdJIb7ZNCzZGG/3/12tuxgWLozAl3fdiI07g6a754spNUpfrvY+PDO7eW3fVsX3yi8WO+KJStpL+fgqQWgHa2s4aBWExaW5dJX8nErFUpVI0nk8gaDd9EkBXb7MAXyfoH4tS10HiQTEs7lCaLof54ZlO2f2RNDsvLy+ExLa7NnTgRznxSmiEU33QBoBBBFwAKEXQBoBA53Qcku9m7Mea3qWY3tg/Ije3ZgoFr2z6vONAfB6w0JWeo2x7MzPb2Y+5RZZsAhiSvOHAhbmnVISdZ7rEj7QfDSTfChtzE300+kLbkJw/iSw5bILKND5ovzobZbG7ee0hP9pgd9xsWxo/GHObyW2/417MVGyg0z7qX5LgPJTc8PBebV3SYTfb70aE82c86KZsjshpAlivX+sGZ06fDmU8qvukCQCGCLgAUIugCQCGCLgAUopD2ETmUG9IXfvS9cObKur+RfjqbMnblprseHB0LZ8YH/K9tO5kE1is3/2thzSxOyMqmamVFoXlZ737w48vhzNFBX2ybfO6J+ORd/xOz5oij4/79X1+MxRydmLXXE5+o2/UNAtnGhW1pdNjejtPKdBJYNmdsYCAWLTsdX+zMClfdpi+iLl//IJxpyN9MVrhqyN/MbrLJQmXrzbUANjU9Fc5sbPhi35GZI+FMVrR86aWX3fUntREiwzddAChE0AWAQgRdAChE0AWAQhTSPiJ7e76768q//jCc2d31Z3aTddXLPb4IM9oXu8b2pHA0lhTbOtK5pYU1M7OOdDdla2aaoXBkduHpU/7fbcZJW/rcOh3LzKzvSV9c67z+43BmTV6TrtTJftboRFydrsWcbPXMztCIu9bClpnZ4abvNOzZjYW9oWS9u3a3ZYW8/mFf7NvqjUWyISmc7R0mHYPjvph1mBTtRkf9z9JV6mZxwpt2sZmZTcgUvOZg/OyHk8/jwvnz4bHHBd90AaAQQRcAChF0AaAQOd2PyDf+/u/c9W6SI7u16fN/q73xpvHPnD3jrk/PxZvNd3Z9ju7ynYVwZl+mfB0exhvkNc861Iz5uJHDmA/UZozG7Gw405Eb8rOcoTo1FjccXF5ecdfZ6vRjg/5zHJ6O2zYakp/M8tfjTz7vrqeSrR1by35rx9K1q+HMTju+xsYxP43rIGlF0bX1vTNxEplOXTuafPYTsjr9xo3r4Yx+jtlmkYZMphscjH+vIyM+Dz4s12Zmv/VbvxUeG08+28cF33QBoBBBFwAKEXQBoBBBFwAKUUj7ENrJ1Ka1JV9gaU7GotDAni9WHCRFobPP+dU3I9OxkNaUItnMs+fCmds/et9dX1xZC2eCpIFicS++xqk131jQkzRQdKVhIyvU6E3zx16Ik8je/ad5d32QfPajo77A00wKgjqNqy9pTNEVQ7fuzIcza2v+cxyYPBrOjI3FZhVtjrh9/Vo4syh/Q1kzgjYsnDkbVyUt373rrrvJZ9/b579vTY5MhjOqkzRi6Cr7z774Yjhz4cKFez7344RvugBQiKALAIUIugBQiJzuh6DDZMzMxod8HrHVigNNppt+On5/MgSmZ9JP599NflavrK9uJ4NRjn/uM+766E4cSrN+w2+puLsQ18aPJjfEb7V8XnUiGcozfso3eWTbAzSvuPyjd8OZlgwSmuqPf7KNcb/1oD9ZN98rg3IOFmJDyeaAbpeIOcyZ2Rl3vSLNG2ZmzWQLwvLycnhMaU650x9/95ovztbEL6/4n6Wr1M3i7yN7zfrZZ1tEdOPEL33hC+EMPL7pAkAhgi4AFCLoAkAhgi4AFKKQ9iEMJIWauTO+cNRaiDfW96/6KVJ3ksaD1Q/81KpjTz8TzmhTRVbwOTRf7OobitP7x5980l1PPp0tYY+0oNLTE//fHc/E5+nZ8IW7N6/fCmeaUgCbGY+rwrXJIivatVr+s88aU+yGXyU/lzVQtH1Bcl0aEczM5pPtFqMyfWt3J6531w0Ye624leLIEdkKkTSLjAz7n5VNVJud8QXBw078G5qYmHDX43JtZvYff//33fXYaGwKgsc3XQAoRNAFgEIEXQAoRE73I3LuuU+762tvfD+cmZzzQ0X6l2LDwuW3fV6xeex4OKM3pPc14q9R83i6RdbMrCNNFoftew9GMctyyMnAG/PPddiOZy6/6ZshtlZiA8HcjM/XNodiTlcH3HSThpJ+yfPez+YC/ZzNYsNAe3MznBk8GX8fun33xs0b4YzmVXXbhVlST0iS5TrcJ2sW0Y0Pg0lzhG5e/tzLL4czT0ldAPfGN10AKETQBYBCBF0AKETQBYBCFNI+Is0xf+P4wIXY1KDbAqbHYnFrpuMLHN9+9TvhzFNH/Y3tE5Ox4DM242+i3z8yE8709PoijBa/zPKilJ7LmiN6pcBz/fW3wpm3rvli0ngnTrHSn95ICoIqawbQQtHYfRTSdDKZmVlHmj70fZqZDTbia9ze9kVTLXaZxc+6fyAWwPTfZQ0U+rqzIpmuV9drM7MvfOGX3PWXvvilcAY/P77pAkAhgi4AFCLoAkAhcrofER08sr4dc23LOz7X2JM0A0zM+CErL5yK24A/WPAbaW8uLoUzX3jSb2DNGija7fsYnJNsC9BzWQPF6lt+G/G/XrwUzrSW/esenIiDakYlx53RYTZZfjIMdEly1dqMsJk0Pmxtx4YWdbC1ER5rD/gmj82N+Nw6BEcHzpiZNWRzRvZeNaet2y7MYm749KlT4Qw53AeDb7oAUIigCwCFCLoAUIigCwCFKKR9RF599VV3vbQUi1vra74AttMXiyCnpMCSbRg4Ou3XcHd34vP8z//+v9z1f3jmXDgz+4svumttljAz63ZiwWn34hV3/d7NuM78veu+8aG7FleVD435P7/eZJX8xoYvSmUbH8LELJk6lskmiGnh7M6dO+GMrlJvJE0nx4fHwmN37vhNItnfh268OHHyRDijWyGyQue0bLyYmpwKZ557/jl3/Zu/+ZvhDB4MvukCQCGCLgAUIugCQCFyuh+R69evu+ud3d1wRm9sX16Jec6W5OzGBuMW39G2z70ODcRc7Olxn+d9853L4cz2Oz43mw1hyYQ8627MO0/2+lzwyIm4WVdnxegGCDOz7pgfTLPbG/9k+7b96xlONuQqza+bmd1aXHTXnWSrcN/5Z911YzC+5sXl+Hu9ecPnuDe3tsKZUydPuuuZmdlwZl82Vxy0Y45bt2t87vOfD2e+/CUaHx4WvukCQCGCLgAUIugCQCGCLgAU6um2D+Ld7/i5tfb8pKuvf/3Pw5k9KYJsb8diSn+/FG+SaVi7MlUrex5tapiO/RO2d/mmu84KaQdJc8TYkH+NIzOxGUC3FWRrwLUgl03M6px5yl23duKUr5ntVf/6xuLr0c/+9u3b4UzPE0+762RrfNjKcHAQt1RcTCaqaePFkelYWHzm2WfDY+r27Vvuemw0vtc/+IM/cNcvvvhiOIOHh2+6AFCIoAsAhQi6AFCInO4Dkm0d+Nu//Vt3vbAYB8VoCnd4OA5mae36nO5O0pxwcOAbBNor8+HMgORUx8ZGw5mR0fiYvshsK4W2a2RbhVdWfS72sB2HtxzOHnPXzU5sfDgiTSfr6+vhzPq6f6+tVmxeGXzus+66q9smLL7XGzeuhzM3ZNiPmVlzyDdRzB2fC2d0UM30kZj3PX36jLt+5ZWvxp+VNGzg44NvugBQiKALAIUIugBQiKALAIUopD1EP/npT8Nj3/zGN9y1bhMwiyu2Mz06wmshFny6sk5cNzCY5RsWdFtBtr1AV553kjPLMo0re55u1z9Ptpa8I0W65WTbxoE0nTSn4gSvvUP/PFmzxo4896WLF8OZ7H0MDftpcdnn+nu/93vu+ktf/GI4Mz4+Hh7Do4VvugBQiKALAIUIugBQiM0RD9ELzz9/zzPf+97r4bFsI65qy/aEvWT7rA640Y0DZnFQjFnMoeo2AzOzjuR0szxnW7YehDy0xcE5WT57XZo8dEiOmdmh/Lu1rSTvK68n29ygjSGDzcFwpL8Rc8F//Md/7K6fT373U1Nxay8+efimCwCFCLoAUIigCwCFCLoAUIjmiI+59Y04MWtxwa8Kz6ZqXbni16tf/EEsyDW3fAEqW4GuBTmzuD1Br83MWlJcy9aZawNF9rPC88rWDLNYgDucPRnOrK74iWa9ffE169aOc+fOhjO6kePXfu3XwpmXX345PAb8f3zTBYBCBF0AKETQBYBCBF0AKEQh7RNK17S/+YMfhDOvfefb7vpgLXatNfZjt5mu3ukkE7u0KNZoxglmwzLVbH7+TvI8vpPt7Jkz4cyv/uqv+tdn8U96cMB3jp0/fz6eGYzdZcBHjW+6AFCIoAsAhQi6AFCInO5jbHHRN1lcvXo1nHn77bfjv1vwudfdZFPDM8+/4K5f/MyL4UxD1pl3unHl+YXzF9w1eVc86vimCwCFCLoAUIigCwCFCLoAUIhCGn6mvWzdu66sobgF3De+6QJAIYIuABQi6AJAIXK6AFCIb7oAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUIigCwCFCLoAUOj/AYzf9rI8MivdAAAAAElFTkSuQmCC\" y=\"-8.212344\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\">\r\n <g id=\"xtick_1\">\r\n <g id=\"line2d_1\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"m5219a7d428\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"35.5525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- 0 -->\r\n <defs>\r\n <path d=\"M 31.78125 66.40625 \r\nQ 24.171875 66.40625 20.328125 58.90625 \r\nQ 16.5 51.421875 16.5 36.375 \r\nQ 16.5 21.390625 20.328125 13.890625 \r\nQ 24.171875 6.390625 31.78125 6.390625 \r\nQ 39.453125 6.390625 43.28125 13.890625 \r\nQ 47.125 21.390625 47.125 36.375 \r\nQ 47.125 51.421875 43.28125 58.90625 \r\nQ 39.453125 66.40625 31.78125 66.40625 \r\nz\r\nM 31.78125 74.21875 \r\nQ 44.046875 74.21875 50.515625 64.515625 \r\nQ 56.984375 54.828125 56.984375 36.375 \r\nQ 56.984375 17.96875 50.515625 8.265625 \r\nQ 44.046875 -1.421875 31.78125 -1.421875 \r\nQ 19.53125 -1.421875 13.0625 8.265625 \r\nQ 6.59375 17.96875 6.59375 36.375 \r\nQ 6.59375 54.828125 13.0625 64.515625 \r\nQ 19.53125 74.21875 31.78125 74.21875 \r\nz\r\n\" id=\"DejaVuSans-48\"/>\r\n </defs>\r\n <g transform=\"translate(32.37125 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_2\">\r\n <g id=\"line2d_2\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"80.8525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- 10 -->\r\n <defs>\r\n <path d=\"M 12.40625 8.296875 \r\nL 28.515625 8.296875 \r\nL 28.515625 63.921875 \r\nL 10.984375 60.40625 \r\nL 10.984375 69.390625 \r\nL 28.421875 72.90625 \r\nL 38.28125 72.90625 \r\nL 38.28125 8.296875 \r\nL 54.390625 8.296875 \r\nL 54.390625 0 \r\nL 12.40625 0 \r\nz\r\n\" id=\"DejaVuSans-49\"/>\r\n </defs>\r\n <g transform=\"translate(74.49 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_3\">\r\n <g id=\"line2d_3\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"126.1525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- 20 -->\r\n <defs>\r\n <path d=\"M 19.1875 8.296875 \r\nL 53.609375 8.296875 \r\nL 53.609375 0 \r\nL 7.328125 0 \r\nL 7.328125 8.296875 \r\nQ 12.9375 14.109375 22.625 23.890625 \r\nQ 32.328125 33.6875 34.8125 36.53125 \r\nQ 39.546875 41.84375 41.421875 45.53125 \r\nQ 43.3125 49.21875 43.3125 52.78125 \r\nQ 43.3125 58.59375 39.234375 62.25 \r\nQ 35.15625 65.921875 28.609375 65.921875 \r\nQ 23.96875 65.921875 18.8125 64.3125 \r\nQ 13.671875 62.703125 7.8125 59.421875 \r\nL 7.8125 69.390625 \r\nQ 13.765625 71.78125 18.9375 73 \r\nQ 24.125 74.21875 28.421875 74.21875 \r\nQ 39.75 74.21875 46.484375 68.546875 \r\nQ 53.21875 62.890625 53.21875 53.421875 \r\nQ 53.21875 48.921875 51.53125 44.890625 \r\nQ 49.859375 40.875 45.40625 35.40625 \r\nQ 44.1875 33.984375 37.640625 27.21875 \r\nQ 31.109375 20.453125 19.1875 8.296875 \r\nz\r\n\" id=\"DejaVuSans-50\"/>\r\n </defs>\r\n <g transform=\"translate(119.79 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_4\">\r\n <g id=\"line2d_4\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"171.4525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- 30 -->\r\n <defs>\r\n <path d=\"M 40.578125 39.3125 \r\nQ 47.65625 37.796875 51.625 33 \r\nQ 55.609375 28.21875 55.609375 21.1875 \r\nQ 55.609375 10.40625 48.1875 4.484375 \r\nQ 40.765625 -1.421875 27.09375 -1.421875 \r\nQ 22.515625 -1.421875 17.65625 -0.515625 \r\nQ 12.796875 0.390625 7.625 2.203125 \r\nL 7.625 11.71875 \r\nQ 11.71875 9.328125 16.59375 8.109375 \r\nQ 21.484375 6.890625 26.8125 6.890625 \r\nQ 36.078125 6.890625 40.9375 10.546875 \r\nQ 45.796875 14.203125 45.796875 21.1875 \r\nQ 45.796875 27.640625 41.28125 31.265625 \r\nQ 36.765625 34.90625 28.71875 34.90625 \r\nL 20.21875 34.90625 \r\nL 20.21875 43.015625 \r\nL 29.109375 43.015625 \r\nQ 36.375 43.015625 40.234375 45.921875 \r\nQ 44.09375 48.828125 44.09375 54.296875 \r\nQ 44.09375 59.90625 40.109375 62.90625 \r\nQ 36.140625 65.921875 28.71875 65.921875 \r\nQ 24.65625 65.921875 20.015625 65.03125 \r\nQ 15.375 64.15625 9.8125 62.3125 \r\nL 9.8125 71.09375 \r\nQ 15.4375 72.65625 20.34375 73.4375 \r\nQ 25.25 74.21875 29.59375 74.21875 \r\nQ 40.828125 74.21875 47.359375 69.109375 \r\nQ 53.90625 64.015625 53.90625 55.328125 \r\nQ 53.90625 49.265625 50.4375 45.09375 \r\nQ 46.96875 40.921875 40.578125 39.3125 \r\nz\r\n\" id=\"DejaVuSans-51\"/>\r\n </defs>\r\n <g transform=\"translate(165.09 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-51\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_5\">\r\n <g id=\"line2d_5\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"216.7525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- 40 -->\r\n <defs>\r\n <path d=\"M 37.796875 64.3125 \r\nL 12.890625 25.390625 \r\nL 37.796875 25.390625 \r\nz\r\nM 35.203125 72.90625 \r\nL 47.609375 72.90625 \r\nL 47.609375 25.390625 \r\nL 58.015625 25.390625 \r\nL 58.015625 17.1875 \r\nL 47.609375 17.1875 \r\nL 47.609375 0 \r\nL 37.796875 0 \r\nL 37.796875 17.1875 \r\nL 4.890625 17.1875 \r\nL 4.890625 26.703125 \r\nz\r\n\" id=\"DejaVuSans-52\"/>\r\n </defs>\r\n <g transform=\"translate(210.39 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_6\">\r\n <g id=\"line2d_6\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"262.0525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- 50 -->\r\n <defs>\r\n <path d=\"M 10.796875 72.90625 \r\nL 49.515625 72.90625 \r\nL 49.515625 64.59375 \r\nL 19.828125 64.59375 \r\nL 19.828125 46.734375 \r\nQ 21.96875 47.46875 24.109375 47.828125 \r\nQ 26.265625 48.1875 28.421875 48.1875 \r\nQ 40.625 48.1875 47.75 41.5 \r\nQ 54.890625 34.8125 54.890625 23.390625 \r\nQ 54.890625 11.625 47.5625 5.09375 \r\nQ 40.234375 -1.421875 26.90625 -1.421875 \r\nQ 22.3125 -1.421875 17.546875 -0.640625 \r\nQ 12.796875 0.140625 7.71875 1.703125 \r\nL 7.71875 11.625 \r\nQ 12.109375 9.234375 16.796875 8.0625 \r\nQ 21.484375 6.890625 26.703125 6.890625 \r\nQ 35.15625 6.890625 40.078125 11.328125 \r\nQ 45.015625 15.765625 45.015625 23.390625 \r\nQ 45.015625 31 40.078125 35.4375 \r\nQ 35.15625 39.890625 26.703125 39.890625 \r\nQ 22.75 39.890625 18.8125 39.015625 \r\nQ 14.890625 38.140625 10.796875 36.28125 \r\nz\r\n\" id=\"DejaVuSans-53\"/>\r\n </defs>\r\n <g transform=\"translate(255.69 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_7\">\r\n <g id=\"line2d_7\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"307.3525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- 60 -->\r\n <defs>\r\n <path d=\"M 33.015625 40.375 \r\nQ 26.375 40.375 22.484375 35.828125 \r\nQ 18.609375 31.296875 18.609375 23.390625 \r\nQ 18.609375 15.53125 22.484375 10.953125 \r\nQ 26.375 6.390625 33.015625 6.390625 \r\nQ 39.65625 6.390625 43.53125 10.953125 \r\nQ 47.40625 15.53125 47.40625 23.390625 \r\nQ 47.40625 31.296875 43.53125 35.828125 \r\nQ 39.65625 40.375 33.015625 40.375 \r\nz\r\nM 52.59375 71.296875 \r\nL 52.59375 62.3125 \r\nQ 48.875 64.0625 45.09375 64.984375 \r\nQ 41.3125 65.921875 37.59375 65.921875 \r\nQ 27.828125 65.921875 22.671875 59.328125 \r\nQ 17.53125 52.734375 16.796875 39.40625 \r\nQ 19.671875 43.65625 24.015625 45.921875 \r\nQ 28.375 48.1875 33.59375 48.1875 \r\nQ 44.578125 48.1875 50.953125 41.515625 \r\nQ 57.328125 34.859375 57.328125 23.390625 \r\nQ 57.328125 12.15625 50.6875 5.359375 \r\nQ 44.046875 -1.421875 33.015625 -1.421875 \r\nQ 20.359375 -1.421875 13.671875 8.265625 \r\nQ 6.984375 17.96875 6.984375 36.375 \r\nQ 6.984375 53.65625 15.1875 63.9375 \r\nQ 23.390625 74.21875 37.203125 74.21875 \r\nQ 40.921875 74.21875 44.703125 73.484375 \r\nQ 48.484375 72.75 52.59375 71.296875 \r\nz\r\n\" id=\"DejaVuSans-54\"/>\r\n </defs>\r\n <g transform=\"translate(300.99 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-54\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_8\">\r\n <g id=\"line2d_8\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"352.6525\" xlink:href=\"#m5219a7d428\" y=\"552.334219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- 70 -->\r\n <defs>\r\n <path d=\"M 8.203125 72.90625 \r\nL 55.078125 72.90625 \r\nL 55.078125 68.703125 \r\nL 28.609375 0 \r\nL 18.3125 0 \r\nL 43.21875 64.59375 \r\nL 8.203125 64.59375 \r\nz\r\n\" id=\"DejaVuSans-55\"/>\r\n </defs>\r\n <g transform=\"translate(346.29 566.932656)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-55\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"matplotlib.axis_2\">\r\n <g id=\"ytick_1\">\r\n <g id=\"line2d_9\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"m15c830b59e\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"10.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- 0 -->\r\n <g transform=\"translate(19.925 14.798438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_2\">\r\n <g id=\"line2d_10\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"101.599219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- 20 -->\r\n <g transform=\"translate(13.5625 105.398438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_3\">\r\n <g id=\"line2d_11\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"192.199219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_11\">\r\n <!-- 40 -->\r\n <g transform=\"translate(13.5625 195.998438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_4\">\r\n <g id=\"line2d_12\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"282.799219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_12\">\r\n <!-- 60 -->\r\n <g transform=\"translate(13.5625 286.598438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-54\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_5\">\r\n <g id=\"line2d_13\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"373.399219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_13\">\r\n <!-- 80 -->\r\n <defs>\r\n <path d=\"M 31.78125 34.625 \r\nQ 24.75 34.625 20.71875 30.859375 \r\nQ 16.703125 27.09375 16.703125 20.515625 \r\nQ 16.703125 13.921875 20.71875 10.15625 \r\nQ 24.75 6.390625 31.78125 6.390625 \r\nQ 38.8125 6.390625 42.859375 10.171875 \r\nQ 46.921875 13.96875 46.921875 20.515625 \r\nQ 46.921875 27.09375 42.890625 30.859375 \r\nQ 38.875 34.625 31.78125 34.625 \r\nz\r\nM 21.921875 38.8125 \r\nQ 15.578125 40.375 12.03125 44.71875 \r\nQ 8.5 49.078125 8.5 55.328125 \r\nQ 8.5 64.0625 14.71875 69.140625 \r\nQ 20.953125 74.21875 31.78125 74.21875 \r\nQ 42.671875 74.21875 48.875 69.140625 \r\nQ 55.078125 64.0625 55.078125 55.328125 \r\nQ 55.078125 49.078125 51.53125 44.71875 \r\nQ 48 40.375 41.703125 38.8125 \r\nQ 48.828125 37.15625 52.796875 32.3125 \r\nQ 56.78125 27.484375 56.78125 20.515625 \r\nQ 56.78125 9.90625 50.3125 4.234375 \r\nQ 43.84375 -1.421875 31.78125 -1.421875 \r\nQ 19.734375 -1.421875 13.25 4.234375 \r\nQ 6.78125 9.90625 6.78125 20.515625 \r\nQ 6.78125 27.484375 10.78125 32.3125 \r\nQ 14.796875 37.15625 21.921875 38.8125 \r\nz\r\nM 18.3125 54.390625 \r\nQ 18.3125 48.734375 21.84375 45.5625 \r\nQ 25.390625 42.390625 31.78125 42.390625 \r\nQ 38.140625 42.390625 41.71875 45.5625 \r\nQ 45.3125 48.734375 45.3125 54.390625 \r\nQ 45.3125 60.0625 41.71875 63.234375 \r\nQ 38.140625 66.40625 31.78125 66.40625 \r\nQ 25.390625 66.40625 21.84375 63.234375 \r\nQ 18.3125 60.0625 18.3125 54.390625 \r\nz\r\n\" id=\"DejaVuSans-56\"/>\r\n </defs>\r\n <g transform=\"translate(13.5625 377.198438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-56\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_6\">\r\n <g id=\"line2d_14\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m15c830b59e\" y=\"463.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_14\">\r\n <!-- 100 -->\r\n <g transform=\"translate(7.2 467.798438)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"patch_3\">\r\n <path d=\"M 33.2875 552.334219 \r\nL 33.2875 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 382.0975 552.334219 \r\nL 382.0975 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 33.2875 552.334219 \r\nL 382.0975 552.334219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 33.2875 8.734219 \r\nL 382.0975 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"pa2c7aec638\">\r\n <rect height=\"543.6\" width=\"348.81\" x=\"33.2875\" y=\"8.734219\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAJACAYAAABi7nrSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3daZDd13nf+d/pfV8ANEAQAAHuIhiSIkWRsikrWh1adixVRZqxnUqUlCp642TsSaZiKVM1rnnnVE3FzlRNKaWynGimXJZl2TOUFEeOTFO2Y0sUV3GnAJIgABJAN4DuRu/rmRd9eYLzPA/VLTSAXvj9VLHA88e59557+5JP3/Pc5zkp5ywAACSpaaMXAADYPAgKAICCoAAAKAgKAICCoAAAKAgKAIDiigSFlNKDKaWXU0pHU0qfvxKPAQC4/NLlrlNIKTVL+pGkj0k6KekxSb+cc37h7W6za9eufOjgwcu6DgBA7Iknnzybcx6K/q7lCjzefZKO5pxflaSU0lclfULS2waFQwcP6vHv/80VWAoAwEptna+/3d9die2jfZJOXDQ+2bhWLyqlz6WUHk8pPT5yduQKLAMA8JO6EkEhBdfcHlXO+Us553tzzvcO7Qo/xQAArrIrERROSjpw0Xi/pDevwOMAAC6zKxEUHpN0c0rp+pRSm6RfkvSNK/A4AIDL7LInmnPOiymlfy7pzyQ1S/q9nPPzl/txAACX35X49pFyzn8q6U+vxH0DAK4cKpoBAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQEBQAAAVBAQBQXHJQSCkdSCk9klJ6MaX0fErp1xrXd6SUvpNSOtL4c/DyLRcAcCWt55PCoqR/lXO+TdL7JP1qSumwpM9LejjnfLOkhxtjAMAWcMlBIed8Kuf8ZOPfJyS9KGmfpE9I+kpj2lckfXK9iwQAXB2XJaeQUjok6W5Jj0rak3M+Ja0EDkm73+Y2n0spPZ5Senzk7MjlWAYAYJ3WHRRSSj2S/ljSr+ecL6z1djnnL+Wc78053zu0a2i9ywAAXAbrCgoppVatBITfzzn/SePymZTS3sbf75U0vL4lAgCulvV8+yhJ+rKkF3PO/+6iv/qGpM80/v0zkh669OUBAK6mlnXc9gFJ/0jSsymlpxvX/o2k35L0tZTSZyUdl/Tp9S0RAHC1XHJQyDn/N0npbf76I5d6vwCAjUNFMwCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCguOQzmoGrZWFx0V/M9bC1lbcycDnwSQEAUBAUAAAFQQEAULARiw01Pj5ejYeHh92cEydO+NudrefNzc+7OfsO3lCNDx486OY0N9e/F+Wc3Zw9e66pxuQvsJ3xSQEAUBAUAAAFQQEAUBAUAAAFGTNcMfPzC9X4tddedXNefu6Zarz4xituTvPoWXctmYRw+813ujnDx45U43Pn/P20t7dX49GxMTdneWm5Gu/atcvNede73mWu+IR1S0trNd6zZ4+bQxIbG41PCgCAgqAAACgICgCAgg1MrGp6etpds0Vn0ZwzZ+oCs1OPfdfNaXnlR9W4s63NzVlaWnLXUkrVuOmpv3VzFhbqnMby4KCbM2tyE23BY1mj5n4l6XuPPFSN87t/xs2Zmpysxin538laWpqr8dDQbjfHFtjddpvNZ0g33nijuwasBZ8UAAAFQQEAUBAUAAAFQQEAUJBohnPixMlqfPToUTdnbm5u1ftZXq6Ttk1HXvKTmurfS1pbW92Ujo4Od80mW21SWZLaTNJ6eWLCzZmZnqnGJn8tSWppqf8zaW/yv0u5RHtTs5vT1dVdjReDE+VsUn1mZsbNsde++c1vuTnNzf7xP/axj1Xj/fv3uzk9Pd3uGt5Z+KQAACgICgCAgqAAACgICgCAgkTzO5xNKkvS888/V41tonWF7wJqNZlka8c+n9jMZ0eqsa1UfrvHX16uO5dGt7PJaHsbSZqfm191zuJCnRDu6u5yc3p7e6vxxNN/5eakwbq7avc117k5C131fefs12Ofa5Rkj74I8O1v/5dqbBPxknT//fdX49tuO+zmdHV1umvYPvikAAAoCAoAgIKgAAAoyClsY1Hh0xNPPFmNbbfTFfVefHPz6nv6c2ZvXvKFWIut7W5Oy1Rd9BXt6dvcQHQtKtayorxDU/Pqvxctv/u91Xhx/Jyb0zNaX8tB19iZV+siwPmXX3Bz2j/+P9b3Ezz3LpN36O/vd3OiU+YWF+ufR2+v/3kcPVqffHf69Bk3Z9eundX47nvucXPagiJEbA18UgAAFAQFAEBBUAAAFAQFAEBBonkbmTdFTH/+53/u5iyYQqzZuVk3p8Uklienpvz9zNePNTvr78cmSXuCpOmbL5yqxk1RB9Iln3we6q07pw7eOOTm2I6rUTJ6ySRfm1v8nKbdB6rxXPeAf6zTb1bjnp4eN6e9vU7sjp4fdXO0UBed5WafsLXJ+L7+Pjdnetr/zGZmZs0c/0WEwcEd1Tgqgnv22bq40SanJemBBx6oxocOHXRzsDnxSQEAUBAUAAAFQQEAUJBT2Ea+/V++XY3n531B2fxCfW1yYtLNsXvfUQO0vpY6P7Az+/tJP3y2Gr/0mi/6eqOzbiQX5RQiJ03RW9uTJ9ycd/XWDd923ODzDjL1bFGBm448Xa+xf6ebEhXdWfYEuYFBn5sY/f7D1Th3+td+9qa7qnFLhz8tbdcu/1zPnDldjc+fP//2i23Ys2ePu9Zp3g82vyRJjz32g2o8FeSlbr/dN9vDxuOTAgCgICgAAAqCAgCgICgAAAoSzdvIrl31yV7nz/vEru2c2tPsE6Q7XqkTq62LPpHYaRKgUyd8t9XvHK8f/1N3HHJzdv7Cz7pr1nJQ9Db5ne9W4++/4rt5Pnt6uBpf+4w/ZW7fzXXSuKM9OOnslSPVuK3tdTen1SSRo0I5m0SPCtzsKXNnR3y306W/+GZ94fob3JzBux9w1xZ31s/Vdk2VpAsX6p+j/TlL/osIUXJ+3iSfX3nlqJtjCx7vuPMON4duq1cfnxQAAAVBAQBQEBQAAAU5hW3krrvurMZPPPGEm2P3ersefcTN6RkarMZt8vvKf/tsXQjVvOz3p//Z5/9ZNbYN6iR/OlteQxGYJHV/5APV+KMf87/f3P4n36nG33zpVTdn/pW6Kd2tt+12c3q76gK7aJ/dNv+LitlsTiEqLrSvUVTgZovHpkeG3ZylsRF3rW9wbzW2DfIkaXi4zs2MjvoCN9s0ryVoIjg5OVGNU5PPO7z+ep2bmZnxp9W9//3vd9dwZfFJAQBQEBQAAAVBAQBQEBQAAAWJ5m2kqalO+HVmX3TWM1cXJ3Xv3uHm6Hxd4Pafj/kiuPcM1bc7eNMuN0ev14nd5etvclOaTOHTctAltTkojrLzogKqA59+sBr/zP/zDTfnr4/VBW1TJ32ys++wP9nMsglim3iO1hit2Saoo6S2vd30tF9zy6BPmGdTGBfdd1tbXZi2FJx6Z78cEDWWtUn1qUnfJbWtte5ie+6cf5+98MIL1fjwYTqrXml8UgAAFAQFAEBBUAAAFOQUtpH58bp52sJf/ZmbM2D2lU8f9cVJEwt1LuJX/sWvuDltbfV+cApyAYuLi9XYNnuTgv1pN0PhpnWye/bBHr7dDT/8Kz/v1/iVh6rxM2+ecnP2mvFaTlmLnqvNM9jmhJGuri53ze7XR/mLxeQfv7ujzhdEz8O+1EtLi26OvV1ra4ebYwvjlpf9/diffVNQ4Pbyyy9XY/uekqQ777zTXcOl45MCAKAgKAAACoICAKAgKAAAChLN28jwS89U4ygB+cZzb1bjJyd9p8z/4effW42jZOeiSRIuL/kuqS3B6WOWTVDbYra3Y1OkaykEawrWc/fH7qnGP/zad92cx56vO4e+59Cgm5N21J1Uo5PXbJI0KjrL5gS3lqCTqk00N+/2hWo2iSv5k86irrUp1fe9tOQLIG3yOXibudc+OuXNrmdmxie+m5vr/0UdOXLEzRkaqp//3r3X+AVhzfikAAAoCAoAgGLdQSGl1JxSeiql9K3G+PqU0qMppSMppT9MKbWtdh8AgM3hcuQUfk3Si5Le6hr2byX9ds75qyml/yDps5K+eBkeBxeJ9mjH3qibu114/Yybc3663se9sdXvfffc9nfqxwr2p9fSyM7u4edR3/Bs6qW6OOmVl067OdEJZc2m+d/+IZ/36P3YB6txVFCW9h+sxh89aEvVpIdefKUav/Safx6Hu+vffaLHsnmGaM7iAz9Xjcez32fv7Kyfa56cdHMGB/rdtfPn61Pm5ubm3BxbQBblHWxuJMqf+Pv2iYeJiQurPtbCQv3cpqd9Y71HH/1+Nf57f+9BN6ez0xfYIbauTwoppf2Sfl7S7zbGSdKHJX29MeUrkj65nscAAFw9690++h1J/1r//csgOyWN5Zzf+lXipKR963wMAMBVcslBIaX0C5KGc84Xnw4ffZ8w+MKalFL6XErp8ZTS4yNn/SHjAICrbz2fFB6Q9IsppWOSvqqVbaPfkTSQUunGtV/Sm9GNc85fyjnfm3O+d2jX0DqWAQC4XC450Zxz/oKkL0hSSumDkv6XnPM/TCn9kaRPaSVQfEbSQ297J7hkUbHWjCk8ahnqdXNOnKxPXpsOPtx9wJyY1r57j5uz1FsnMlvGR92c17/9vWr83874OVFBmTU36wvsfvb6nfXjX+cLuKam6qRkVMxnTxq75j03ujmtR49X49enfLLzxlNj1bjjep/YtI/fcv0Nbk53f33K2/S076R6wSZoW6IErS86a29f/YuA9qS1qEuq7e5qO+ZKUm9vTzW2SW7Jf1liLd1nbeGeJM2ZLyJEBW533nnHqveNFVeiTuE3JP3LlNJRreQYvnwFHgMAcAVcljYXOefvSvpu499flXTf5bhfAMDVRUUzAKCgId4W1dzs43nXrnrvf+wNf6ra4mK919zc4Yu+nvur56rxLQd8QdnYeL3P/9wZX9B1zmwRh19Dc/ys27r9/nzT4ZvqW+3c5ebYJn1RHmZ+vi6yOvrdZ9wc29gvKtZ643y9z9613+/p2+KspWOvuTlLh++vxjt6/c+nc6ben79w5Dk3Z3baF7Qt31Tvq/eb/IUkLSzU+/OTkz5/YovXRkb8twe7u+t1R699NoV5U1O+QaC/n+D3WPOWef31Y27K7qBp4DXX+FwZ+KQAALgIQQEAUBAUAAAFQQEAUJBo3kbu+Om/W41H/vCP3Jy7dtXJxZ6eHjfnibE6SfmjWZ80XViok42dnZ1uTodJLkbFY/b0LZvElKSzwa8ut8zVid2FZ5/1k0wis+2e9/gpZk3PjvvEqszziBLNL5oT7K49edbN6TUFdlGX1OkfPVWNp4LXbOlM3SQgnfNfKOgIuoJOvvhkfeHdH3BzWlvrQrTll//S37dJRk+ZAkBJWrz1bnPFv2b2dbSFcyvX6i8L2C9KSP49FH0J45ln/BcI+vreX427uvx7+J2ITwoAgIKgAAAoCAoAgIKcwjbSYoqj9n/wfW7O8EB9slj3M4+6Ofcdq5vmRfvTr07Ue/rD8/4Ur46Oeo82anhmi5ra2nxzt7Fgr/k//+WL1XgpyEXYorcb7vInyM0+8jfV2J4oJ0nXdtT77K9M+yKrZBq1nT3rG9l1XluvsaMjaJr32tFqPDcbnI5m8gzLQcFfdKpa2lEX+Nk1S9LihTo/0THsT++zTenagvuRyY0s3XinmzI7X687aqxnu/G3BM3/bE6hNXgP2SJFSTpzpn5u119/KHj8dx4+KQAACoICAKAgKAAACoICAKAg0byNNLfXid2BD/6im9My/EY1Hn3aJ3F3/PzPVOOmJl94dPqr/7W+3xY/xxaG2Q6cUlys5u4nSFDfP1gX3dk1S37d0Sli6q0Lr4Za/fN4/YLpOBoko20hWmur/0/LJtWjU8Ta2+v1RN1FZ2fqxGrKfs7Sok+qz/ftqMbdwc8sjdYdcaPiRvtco1PeZoaHq3HTzcHvn6YwbX7evz86OurbTU357q87dtSn8OVln3iP3mevvlqfMLh//343J/o5bnd8UgAAFAQFAEBBUAAAFAQFAEDxzsuivIN0dfmjHMdH6g6bUZXxwnTdKbSj1x/b+L4ddQLy2bnVk3uLQfLTVhAvB11Bo2Tr+Fyd3Gz7ju/m2f3e+vjJ5d5+NyebauCRBb9Gm1hdDBKrtuNnZ6evqrX3E3WNtUd22nF0zVb0StLCvF/j3FN19frU8aNujk1a266pktQWrMk9lklQz2T/+2fO9WsddY21otdjcnKiGvf09Lo5y0Hyuampfq5nz/rOtnv3XrPqmrYbPikAAAqCAgCgICgAAApyCtvYzp073LX5Awer8fRTj/k5b5yoxlPXXOvv3GzRRoVpc3P1tWgvvsnsxUf5gyjv8dJMfd83ffoX/BLNnn1T9vfTMlQXPg21jLg5x2frve9ojR+/Y181Xmq7tN+3ojyDZbuJruU2ktTTZPb5R8fcnF5zX4v+qWpxyeddnO76sewJapJfd3Sqmn2uUV6qt7fOIdgCwJU5vggvpfpnNDo66ubs2lV3ln0nFLPxSQEAUBAUAAAFQQEAUBAUAADF9s+aoGILhKIkbrM5ynHp+DE3p/uWofp+njjh5lg7gl9BRoLksxUVS/39e6+vxs1BAtAWOk29edLN+eYjz1fjqOOnTEL0lo6gMK237lAbHVFpX+soIWoTslESOVyjXU9QCGaTtlEh2NRkXbgYJdWXlus1Ru8hna0T9nn3DauuMVrz3FxdmGc7okrSwMBANY46uzY3+5+HfT3CYs/xOhlvE8/bEZ8UAAAFQQEAUBAUAAAFOYV3mKFb76zGp376TTdn4ljdKK113Bf1aGamGt7Y4veenzdFX0PtvrnaWDL700GR09//J8EJcubUsGjvPY+dr8bHHnnazbF7+FFDvr+7d7AaN/es/rtUtM9uT1pbS24gOjHMXrN741JcLGZPNose367bNgyMHj987TvrHMvCgn8ezc3LZuxfV5tniPIwbW11bsTmISRfqCZJnWaN0cl8/mfm52y3gjY+KQAACoICAKAgKAAACoICAKDYXhkS/MR233a3u7bYv7saL0xPujmzf/5QfZsgSWeTli/PrN4p82MHfWfXqKjJ1lQt/tAnkR99rk6ivzntE5A2aXp7ry9gGrihLliyCVvJP9e1zIkSvWvpeLqWAsQw+WuuRYVpa7GW57Hc0VGNu7u73Ryb2J2dnXNz7O1mZqbdnPPn699te3r8YzU3+/eQ7bg6Y748Ia2t4JBEMwBg2yIoAAAKggIAoNhem2H4iUVNwK69tj5F7ORrR92cyeN1w7MXp9awhx08/rWd9R5tz313ujlRUdPS+bPV+HtPHnNzTs3W+/rRPrs9+e3AkN+PXkuR2Vr22edMo8GgLszdLjX5V802slvLqWbRtcWgEMs+j6WoYaLZn8/Z5wIW+uvcUFQYtrxcrycqwrM5BVu0KMUFflaUZ7A5lfHxcTfHNsAbGTnr5kT5kq2MTwoAgIKgAAAoCAoAgIKgAAAoSDS/w9jEYdRR0urq9wVlM7P17xPv7fNJwicm6wTkWjqHpgF/stbskZfctW/9xXPVOErsDrXWScnhBZ+QHTRzUpd/HjYBGiV2rehUM7vGKNFrXw97yll0u6hQrsMUj0nSnCkOawoS+Pbxo6LExcX6eayleC5KfNvbRUVgg4N1h1rbEVWSmpqazXhtv+tOT9eFcFHC2L62a/nZb3V8UgAAFAQFAEBBUAAAFOQUtrGo8GjiwoVqHO312j5pruhK0pi53YG7rnNzlv/65VXXeHxiqhrPfPmP3Zw3Z/zjJ7NvvLfd7zWfMrfrC/bQe82JXM3NvjjK7iNH+8qu6CuYY3MTUUM6ez9pyc+xt2tOwZoXVy9oW5j3eZgFd6qam+LuZ3bW56UWmuuixKbgudrGftGpZuPjY9W4t6/PzWlrrV/XqIHixIRv6jg/X78/Ojp8s7vJyfr9uWfPHjdnu+GTAgCgICgAAAqCAgCgICgAAAoSzdvYbHCSlE3mxYlEO/YJ69tuv6Yav/69HwWPVScyW9aQxD0dJGjvGvTJxWxajP5o1icpbTJ6od0XdN2wo04utvZ1+sdaw2loU1N1QjIqKLP3ExW4raVQziZ2ozlRYZx9/PkFv0b7M4vWuJYCrqah/dV4OSjCs0VmUYLYdi61r/PKGuvXrKenx88Jit46TYFfdN8DA/V9R6ez2eR8a/A8thI+KQAACoICAKAgKAAAiq29+YUfa2pq2l2zhU9RMzN7JFjn9KibMW/uZ9++ATfn1OvnqvFI0JDO7ivv7fAN6W74yD3uWpqo95p3vfCmm9NsGqUttvr7fvRMvcYPXOMLsWxBW1TgZnMBUUO6tRS42dcjymfYff7lJf8zjBrp2SLE6GdvTzGzTeMkn9NYCArKmsx7KCX/++damuat5fVYMLmRiYkJN6e3t9dds++PKHXU3V3fd1RwuNVzCBafFAAABUEBAFAQFAAABUEBAFBsrwwJKlGy0yYOo2SjTYB2+7yqZkxida7DF0LN28RdkKSz2b0Tkz6xef/OIXet9Zprq/G+2/6OmzP3l39bjZ8f9sVJQ8t1sVaU/LUFXVFXUJt8jhKbNokbsUVvURHcWhLGUULWFl5NTvrOoU1D9WvdfcB3v50fOljfRv4NYgseo+S8598fPtHsb9Vsut+2t/svFCwFJ8jZ121h0XeNHRuru7R2dPjiRorXAADbFkEBAFAQFAAAxdbe/MKP1d3T7a7Zbf3F4IQuV/yz2+8rD9x0UzXON93h5jzw3JPV+Ntfe9jNua2n3qO9+x98yM1p6vfFUc2meG357Hk3Z2y63oA+Mzrm5txzsC66i/bibVO2qEmcP0XM70/bwqcoN2H3uedm/alztpFdlHeIHl+3Hq6Gbbuvd1P6TCHa3FxwqtqYfR2jorM6h7CW0+o6O/1+fU9PnZux+YOV+67vJ2q+19bmT1Xr7u6qxlFDPpsHGh4ednOeerJ+n993331uzlbCJwUAQEFQAAAUBAUAQEFQAAAUJJq3seYmH/NtUZVN0klSV1edgJua8kVOw7fdX41tp0pJatlXJzLv6fWJxMfH64Kym3/wjJtjC5gk6bXTdfI3ShIeHa3n3LnPJ97nmkxScs4nKW0CNCoKtGuMkr82sWyL0CSfkI1OULNJ5KgoLupu2r5jbzXevWe3mzMzXRe4jY9fcHNsEjnSY77kECXVbRff6HUdMsV00RcBzp2rO93ak9jezpR5jQYHBt2c/v76FLfWVv8+m58PkvpbGJ8UAAAFQQEAUBAUAAAFOYV3uKgYqLm53pNtbul3cxam6zzDa6+ddnM6+nZW485/8HE356MjJ6vxsb/4gZvTe6NviLdrV73GC+d8Ydqhg/W+9miw994THTxn2KKztTSpm7jgT//K9jSyoAHcsmkkF+VTbOO4aM7AgD8Jr2Owvhbd7syZM9XYNraT/Clqe/bscXN27NhRjS9c8LmJpaX6PdPe7gvM7B5+VAQ3OFjnAmzjPykujLN5qKjozRbYRSfI3XLLje7aVsYnBQBAQVAAABQEBQBAsa6gkFIaSCl9PaX0UkrpxZTST6WUdqSUvpNSOtL403/5FwCwKa030fzvJX075/yplFKbpC5J/0bSwznn30opfV7S5yX9xjofBxuoJTg1q3ugTiK3dp11c2bP10nL4UlfrLXcXt/P3Lvf5eace/2Iu9ZqEpdRV9C2vjpx2RYkf2dscjM4HM4mmpeCzrIzs3VyM+qk2trir1nNpjAsOg2szdxNc6cv+opOfmtqr/9zf/mU/3KA/eJBkNd1J5vZQjXJJ6ijk8/6++vEd3u7fx62i2/8xYj6NYuSytHPo6PDvD/afNFbc3P9mt11111uTleXf7yt7JI/KaSU+iR9QNKXJSnnPJ9zHpP0CUlfaUz7iqRPrneRAICrYz3bRzdIGpH0H1NKT6WUfjel1C1pT875lCQ1/vS19JJSSp9LKT2eUnp85OzIOpYBALhc1hMUWiTdI+mLOee7JU1pZatoTXLOX8o535tzvndol/8eOgDg6ltPUDgp6WTO+dHG+OtaCRJnUkp7Janxpz+qCACwKV1yojnnfDqldCKldGvO+WVJH5H0QuOfz0j6rcafD12WleKysF1Rl6KjC4OknGWTi3fc6Y/jPPajl6rxyfO+qnVurq4O7tznq0PTgZvcNZvs7ZzwW5DLL/6wHgfVuXPzPvntHt9kn1uCTplRBbFlO4XOHvLPdbm97lCbgyR7x1TdWXbXrl1uTk9Pj7v2Rq5/B5yennJzbBdSW9ErSX199eN1dflEs+3S2t3t17NzZ131HFUr26SxTfpHt4u6rUZddNfSTfXaa+vOststqRxZ77eP/oWk32988+hVSf9UK58+vpZS+qyk45I+vc7HAABcJesKCjnnpyXdG/zVR9ZzvwCAjUFFMwCgoEvqNhadqmaLvKKOn3m53le2xUprldrqvd1oD9fuEUddKKOTxWyX1oULo25Ol9kPb+v33V7tXnO092z32aem/F78gjl9a6a7y82Z21F/y67lWp8rsffTda0/sax/+FQ1th1JJSldd71GMV0AABydSURBVMhde+NMXbwXHGKm7u46PxCdvGYLyiR/R/39fdV4LfmCqOiss7N+HZuafE7BPo/4sXyewc47e9YXYL766qvV2J5KuHLf2yvPwCcFAEBBUAAAFAQFAEBBUAAAFCSat7Go8Gh8fLwaT01Nujm2w2bUvdImF2dnfRGYPRYxOtrRJi2bmvyczpcfc9e6R+vEcpSMTmtIIttCp4kJ30nVFp3ZRLwkzb3ngWq81O4LuuxvYNGa7Xp2Hr7Hzdl9W72ewTvf5+acOHHCXZs4+tfVOPp57Nix01zxiV17/GWUsJ6aqovXoiLBiYn6vbd37zVujv1ihC2Kk3wH1JagG+3YmD+u1XZXnZ/3HWlnZurH+973vufm3Hvve6txR5DUXktB6GbBJwUAQEFQAAAUBAUAQEFOYRtrDRq3dZuiqslJn1Ow+8HR3vfoaL1Ha+9X8k3ZoiIfu2fc1OR/T+kLTlVr31nvfUf5E1ucFM2xe9TRHNsQ78KkL+haWqw31puafQGV3cO3e9qR1OZfs8Fb6tO/loOmhmfOnHHXfKGgf3yb0zh48KCbY08/ix5/YqJ+jex7SvKFYFFRYEfH6g3xlpdXLy6MbmeLEhcWfCGnfe9H+Ypjx16rxkND/giZXUN1E8HWIL+1WfBJAQBQEBQAAAVBAQBQEBQAAMXmzXbgirCFRlHXR2tx0Sd6ffGa7+Y5PV0Xr9lT1qL1RMVSo7v3umvdJ1+vxtFJY319dafOuTlfQGUTyzbxLUnZPNf+Pt9tNc/XRYHa7QuxbIJ2dNR3drXXoud1+s/+qBpPTfrE6vJJX7zWsu+2ahwlVu0XD+wJe5I0NlYnjdvafPfbc+fOVePmZv+/Gvu+ssVskrRzZ52gbW9vd3Psz3Buzie+o47B9ksG0Rcz+vvrE/VsF1lJ6jPvh76+XjdnMyeWLT4pAAAKggIAoCAoAACKrbPRhZ/YQlB0Njtb7/NHJ1nZffWZGZ8vsKeozQcNz2yeYcY8tiSdN3vPXV1BI7n+a921idZ6XtePfujmdJw/X42jYrGoMM9qPnxHNe6+4bCbMzC0pxpHJ9q9eao+MS3aQz9wYH813r9/v5vTfeut1fiaoChwz6Rv7Dfxgx9U4+HhYTdnZKS+ltIeN8c224saDVqtrX5Pv6Wl3ouP8lv2vTg+7hvb2TxUVEw3NjburnV01PmJPXt80VlPT50fsHkqSRoY8DmmrYxPCgCAgqAAACgICgCAgqAAAChING9jc2soKIsKj86cqZON0WlXvujLJ1ZtMnpwYMDNmZm2HVmj06/887DdPJfueMDNaW6rE5CjUffMrjpJGBVHaaF+/IlZv8bx14/72xnzpnjvwQcfdHP6++tEpu30uqJ+XtGXBWzRlyTdeWfdXfW7333EzbGJ3SgZbRuORl8ysB1x7XtB8gnq6HmcOXO6Gs8FCfw5c+pfVKQYdei1BXXRa23f+21tvkvq0lKdjO7o2DqnrEX4pAAAKAgKAICCoAAAKMgpbGNRLuDkyZPV2BbwSL4p2vy830O3+7/xqVn1Hm13t2/utnt3XRx1+vRpN6ery+8H2331KKcxnurn1tnv99ltMd/UlC9ms/vRC8Eeejanf0VFTocP1w3pBoIcS3Tym2Ub6y0s+DWn5O/n2mvrxoK33367m/Pcc89V42if356OF+3Fz5p9/qjAzRYO2lyW5H+ui4tRjqVmT7hbubZ6I73ofd7ZWRfU2eZ3ks9vtbf7/MlWwicFAEBBUAAAFAQFAEBBUAAAFCSat7Hz5/3JXjYpduGC7x45M1MnX1tbfTHO4mKdpOvt9adN2QRklPi2CVmbCJfiwiObIF5edke4aWLiwo+9jST1msfP/ig4VwwVJYNtAVf0ethrcWFaLdlKseB2LS2++2t00phd9+HDvtvriy++tOoa7Zps4jmaE3WjHR09b+b4x4qem59T/28s6rYanfxmbxedHtjdXd+XTfJL8X8fWxmfFAAABUEBAFAQFAAABTmFLSraM540p21Fzd3OnDlTjaem/D6/3VvdudPv6ftCH7/3bR8/yinYveYofxAV2NnGbQsLPl9gT1qLGuvZfezOzg43J2rmZqVU/35lTyeTpJ6e+rS43bv9SV/t7fXjRw0LW1vr/2yj4rXolDnLrlnyhV9zc/41C+4peHy7Rl8YZq9FuQmb44mK4OxzbWvz75fovwX7Ph8c9MWEtlhtYGDQzbE/j62OTwoAgIKgAAAoCAoAgIKgAAAotleG5B0kKqB66qmnq3GUyLQFXOPjvnitp6fuZholJG0nyKg4aXm5TkBGCcB5c5LW4KBP5EVFZ1KdgIzW6Iu8ok6ddbJzfDw6Qa4uTooKyuylqLvokSNHqvHwyIib07KGpOnQUN3tdXBwh5tji64k/6WCV1456ubY91VU9GWfa/SztwnrKIlsX9fofmwSN/oZ9vbWBYj2/SvFie7+/jqJ3NLii9AOHTpUjaOT17YbPikAAAqCAgCgICgAAApyCltUdNKZvTYy4k+yGjM5hKg4yu6bRvkLuxcfnapmi4pscZ3k94yjhnT2sVbuu75de/vqjeOWl6MGdPbx/JylJb/X7e7FrLupyRePLS7WTfOik75sM7doL/7cubPVOMo7RAV/o6N1g8QLFy64OWs52cy+9vFt6p9HlIex9xOdamYb0PX0+EaDNr8VvV937PC5Ktsc8uDBg25OVMy43fFJAQBQEBQAAAVBAQBQEBQAAAWJ5k1oKTrZa64uqjp9+pSbY5Np0UlSySQAo66kNrkZJVp9F06fILanqkVdUu2pZkGeOUxSHjpUJwVPm+6vkjRmEqtREtsWvXV0+MS7LbCLiqxsQjTqnLmWk9bsaXFRUZ597W3nWyl+rjb5HZ1qZl/q6H5swj66H1sItmvXTjdnbUWSdcI8SqDbNdpiNknaudMX+HV01O/9qAjwnYhPCgCAgqAAACgICgCAgpzCJhQV30xOTlbjaB/ZFv9ERUV2TzbaD7aNyqICqp07d5rxLjfH7k+Pj4+5ORcu1MV0Uf4gOmXO5icWg9PH7PNYXo5yCvVrFOUC7B5+lGOxuZHZ2Tk3xzaJW1qKCvXq+44awE1N1bmiqAAxys3YdUdrtK9ZXLhX33l0OtvAQL1fHzWbm5ysiy2jJoLRNWtoaKgaHziw382JXg9bKNjxDixUi/BJAQBQEBQAAAVBAQBQEBQAAAWJ5g02Pe1PFYtOGpuaqhPNMzM+uWeTaXHirk6atrZGXVLra9ddd52bYztMRux6bBFYtJ7ofqMuqTYZH52Ilczzz0Gi2SZSm4PErq3Liwq6bJGVPeVMkmZm7M/V34/tHBp96cAmn6MEepSgtqIvIthEd/QlA3st6m5qf9ZRsaX9AkFUmGaT4b19vkuqtWOHL0Lr7fVdfAcHB1a9r3ciPikAAAqCAgCgICgAAAqCAgCgING8weJjNSfdtdOn6wrmqBLZJveihKidEx1BaLubtrf75K+966AQ2T238+dHV50TvR628lRaW8fRpUV7HGeQtDUVzMtB9bStRI7uZ2GhTobbxHN0O5949nNshbEkzc+v3lk26uRqq8VtZ9eVa/X7ylZqr9y3vU2UjK4fK0qG26Mu9+y5xs2xFebR69rd3W1u41+zKBmOGJ8UAAAFQQEAUBAUAAAFOYUNNhAU0Lzxxhvu2sxMXQwV5wvq/d+oMM7u/b/xxkk3p7//9h97G8nvfU9M+DzISy+9VI1HR8+7ObYQKnpe0zO+EKzb5BmifW0rKtayp9NFe/G2eG4tnVzj7qL17aJirc7O+nlF+SXf/dXnOObmfKFge3tdlBh1SZ2fr59rfIJb/VpHP3tbABk9V/s8olyAzZ1FP0ObZ+jv9yevdXX5EwYR45MCAKAgKAAACoICAKAgKAAAChLNG6w16Ga5b9+17troaF341dHhE2c24dbT4ztK2qMTo6KiJ598shrv3Om7TtqCshMnTrg5/rhF/zuIzWPaYjJJags6udoEaErR7zerH+Vou4l2BgnJadPxNEpG20RznDRd/T83e2SpLYqLRIV80ePbn3VcALl691mfMPfFjTbxHyXn7ftjdvaYm2Pfw/39vghtbKx+zQYHB90crB2fFAAABUEBAFAQFAAABTmFTai7258SdcMN11fj06dPuzn2FLXpad9cLqUOM/Z7vTZfMDw84uZMTtYFS7ZpnORzCNHz6jMnabW0RA3gfCGW3UeP5nR21vmBaA/dFvjNzfuCLntCWlTQZffQoz19m/e4cGHczVlYsPkK//OxuYmo2VuUv7D5id5en3Oy75moAZ3NBSwv+5zGwEC9r98eFK/Zoru5WX+aoC1WWwyKAq+7zjd1xKXjkwIAoCAoAAAKggIAoFhXUEgp/c8ppedTSs+llP4gpdSRUro+pfRoSulISukPU0r+S+YAgE3pkhPNKaV9kv4nSYdzzjMppa9J+iVJH5f02znnr6aU/oOkz0r64mVZ7TuETeJK0vHjx6tx1C3S5FXDE7lsAdPCgk+s2oTkxMQFN8d2F7VdMSNRJ1N7qltcnORPbLMngkW/e9jEbnNzUBhn1h0lTWUS711Bcr7ZJNWj18O/9j45brubRq/ZoUP1lw6ixPfZs/7LAfaEsijRbNcdPQ9bqGffC5HmJp/kb2+rk8+dQRGcfWrRSYG333541cfH2q13+6hFUmdKqUVSl6RTkj4s6euNv/+KpE+u8zEAAFfJJQeFnPMbkv4PSce1EgzGJT0haSzn/Nb3xk5K2hfdPqX0uZTS4ymlx0eC32oAAFffJQeFlNKgpE9Iul7StZK6Jf1cMDXYxJByzl/KOd+bc753aNfQpS4DAHAZrad47aOSXss5j0hSSulPJP20pIGUUkvj08J+SW+uf5nvLHbvV/KFaWfP+pfVNruL9oPHxuqCqakpX+Bm9+ujwjRbZGZvI/nCJ7sXHd0uagC3Z8817potVovyDs3NzT92LPlT1ezJZ5LUZgqmosIwu/cd7fNPTtavvf1ZSL6YcN/+/W6OLQocGRl2c6JT1exzi07U6+6u5/hiOp8Lsa+h5N+Ldiz5Aj+bX5J8ceNdd93l5uDyWk9O4bik96WUutLKO/kjkl6Q9IikTzXmfEbSQ+tbIgDgallPTuFRrSSUn5T0bOO+viTpNyT9y5TSUUk7JX35MqwTAHAVrKv3Uc75NyX9prn8qqT71nO/AICNQUUzAKCgS+omZJN9knT99Yeq8dmzZ90cW/g0Nu4TmYsmcdgUFEf19NbdTCcnfDHdkkm+2kS45Iu1oqI8mzCOOrtGBW22C6cdr1wbqMb2VDMpSnT7xKrtrhqdejc1VT+3c+fOuTmnTtWdbZuafKbXrrkvKDCbMK/j9PS0mxN1V7UJ4umZGTeny1RARl1jbcI++tnb92L0nu7uqd9n3V1+zoc//GHzWPwv60rjkwIAoCAoAAAKggIAoGCDbovYs2dPNe7t9aeYXbhQN67r7+tzc+bn60KjqMCtq6veV57s8fv8x4+/Xo2Dei7t3bu3GtvT0iS/9z466oucon3+8+fPV+PopLPl5QPV+MyZM26OzWlEJ7/ZnEKUGxkbq/MVUc7H7sX39Pgixf7+OqcQFQWOmucezbGnzkn+uS0HxYT2VDWbK5F8gV1npy86W1ysf2ZR4aJtkvehD33IzbGnAOLK45MCAKAgKAAACoICAKAgKAAAChLNW9Qtt9zqrj399NPVOEoA2oRsXHRmk4K+46dLWi77OfZ+bNdUyRemnT7tk8Fzc74QzCZtDx3yJ3LZTqFR59Dz5+v7tglSyb9mExMTbo7t7hqdemcT1lHy1X5ZIOpkOjVVF6tFCfzo2uxsXaxmE8aSX/d8ULzmO8L652E7ue42X5SQ/Bcaou7AuPr4pAAAKAgKAICCoAAAKMgpbFF79/rTyI4f31GNo/3xHTt2VuOocZvdI473rOv7Xlz0c+w+e3TymT3FbGBwwM0ZG/WN7FZ7LEmamKj356OCrp6euuHcm2++4ebYvX+7Xy75/XmbP5B8jiV6XW2+Isop2PuJTouL8kDj4/XrEeUC7POIisfa2+s8VJSb6O6uiysH+v3P9QMf+IC7ho3HJwUAQEFQAAAUBAUAQEFQAAAUJJq3kfvvX/1obHtKV3Rql+1AGiVEbQIyKgybNd07e3p8Z1d7QlhXkDRtDVqwnjx5shpHHVDtaWxRZ1lbmDY46E9w6+qqi6psclySsqnoWl5ePYk8NuZPxvPFYj6J6/O6PqkcJZ+Xl+uOp21tPvHe3Nxi5kRdY+trN954g5tz9933VOPotcfmxCcFAEBBUAAAFAQFAEBBTuEdxuYCbr/9djfnscceq8ZRYZhtXmb33SVpfLwuOhtr9m83m2eITiObn/f72r29ddGZPTFM8qeYRU377Kll7R2+iaBt2mcby0nSxES9Xx81krPFY3Nz/pQ5exJeVPBnRcV0TU0+F9HXVz+P6NQ9m58YHNzhZtxzT50vOHBg/6prxNbBJwUAQEFQAAAUBAUAQEFQAAAUJJrf4aKior1791bjyUl/0pg9sS1KWtoir9OnT7k58wvz1XjP7t3BKqMCrvqa7doqSYvBNcsmcm0HUMl3m52c8kntsbE6qR6txxYBtrf7pLbt5BoVj9mTz6Kksk3ESz7RfMMNvuhs37591diejobtj08KAICCoAAAKAgKAICCnAKcm2+5uRpHjexOnDhejZuafJGV3Wffv98XOc3N1TmFhQW/Fx8VZ9nGbTbHIflcgG1aJ0kHD1636v2cOHGivt9gjR2m6C3KBdjnes01e9ycgYG64O7AgQNujj3VrH+g381pa/WPD6wFnxQAAAVBAQBQEBQAAAVBAQBQkGiG02IKuqIumLZz6MTEBTfHJk2PHXvNzbEnhEVdQaNTzPr6+qpxVGRlC9yGhobcHJv87uz0BWW3mMR7lLC2lzqC+yH5i62ATwoAgIKgAAAoCAoAgIKgAAAoSDTjkvT19f7YceRd77r1Si1HC4u+yri1hbc38JPikwIAoCAoAAAKggIAoGDTFdsC+QPg8uCTAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAIpVg0JK6fdSSsMppecuurYjpfSdlNKRxp+DjesppfR/ppSOppSeSSndcyUXDwC4vNbySeE/SXrQXPu8pIdzzjdLergxlqSfk3Rz45/PSfri5VkmAOBqWDUo5Jz/StJ5c/kTkr7S+PevSPrkRdf/77zi+5IGUkp7L9diAQBX1qXmFPbknE9JUuPP3Y3r+ySduGjeycY1J6X0uZTS4ymlx0fOjlziMgAAl9PlTjSn4FqOJuacv5RzvjfnfO/QrqHLvAwAwKW41KBw5q1tocafw43rJyUduGjefklvXvryAABX06UGhW9I+kzj3z8j6aGLrv/jxreQ3idp/K1tJgDA5tey2oSU0h9I+qCkXSmlk5J+U9JvSfpaSumzko5L+nRj+p9K+riko5KmJf3TK7BmAMAVsmpQyDn/8tv81UeCuVnSr653UQCAjUFFMwCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgICgAAAqCAgCgSDnnjV6DUkojkl6XtEvS2Q1ezqXYiutmzVfPVlw3a746NmrNB3POQ9FfbIqg8JaU0uM553s3eh0/qa24btZ89WzFdbPmq2MzrpntIwBAQVAAABSbLSh8aaMXcIm24rpZ89WzFdfNmq+OTbfmTZVTAABsrM32SQEAsIEICgCAYtMEhZTSgymll1NKR1NKn9/o9URSSr+XUhpOKT130bUdKaXvpJSONP4c3Mg1WimlAymlR1JKL6aUnk8p/Vrj+mZfd0dK6QcppR821v2/N65fn1J6tLHuP0wptW30Wq2UUnNK6amU0rca40295pTSsZTSsymlp1NKjzeuber3hySllAZSSl9PKb3UeH//1GZed0rp1sZr/NY/F1JKv77Z1rwpgkJKqVnS/yXp5yQdlvTLKaXDG7uq0H+S9KC59nlJD+ecb5b0cGO8mSxK+lc559skvU/SrzZe282+7jlJH8453yXp3ZIeTCm9T9K/lfTbjXWPSvrsBq7x7fyapBcvGm+FNX8o5/zui74zv9nfH5L07yV9O+f8Lkl3aeU137Trzjm/3HiN3y3pPZKmJf2/2mxrzjlv+D+SfkrSn100/oKkL2z0ut5mrYckPXfR+GVJexv/vlfSyxu9xlXW/5Ckj22ldUvqkvSkpPu1Uv3ZEr1vNsM/kvZr5T/sD0v6lqS0BdZ8TNIuc21Tvz8k9Ul6TY0vy2yVdV+0zp+V9Debcc2b4pOCpH2STlw0Ptm4thXsyTmfkqTGn7s3eD1vK6V0SNLdkh7VFlh3YxvmaUnDkr4j6RVJYznnxcaUzfg++R1J/1rScmO8U5t/zVnSf00pPZFS+lzj2mZ/f9wgaUTSf2xs1f1uSqlbm3/db/klSX/Q+PdNtebNEhRScI3vyl5GKaUeSX8s6ddzzhc2ej1rkXNeyisftfdLuk/SbdG0q7uqt5dS+gVJwznnJy6+HEzdNGtueCDnfI9Wtm9/NaX0gY1e0Bq0SLpH0hdzzndLmtJGb7usUSOn9IuS/mij1xLZLEHhpKQDF433S3pzg9bykzqTUtorSY0/hzd4PU5KqVUrAeH3c85/0ri86df9lpzzmKTvaiUnMpBSamn81WZ7nzwg6RdTSsckfVUrW0i/o829ZuWc32z8OayVPe77tPnfHyclncw5P9oYf10rQWKzr1taCb5P5pzPNMabas2bJSg8Junmxrc02rTy0eobG7ymtfqGpM80/v0zWtmz3zRSSknSlyW9mHP+dxf91WZf91BKaaDx752SPqqVROIjkj7VmLap1p1z/kLOeX/O+ZBW3sN/kXP+h9rEa04pdaeUet/6d63sdT+nTf7+yDmflnQipXRr49JHJL2gTb7uhl/Wf986kjbbmjc64XJR4uXjkn6klX3j/3Wj1/M2a/wDSackLWjlN5XPamXP+GFJRxp/7tjodZo1v18r2xXPSHq68c/Ht8C675T0VGPdz0n63xrXb5D0A0lHtfLxu32j1/o26/+gpG9t9jU31vbDxj/Pv/Xf3mZ/fzTW+G5JjzfeI/+fpMHNvm6tfGninKT+i65tqjXT5gIAUGyW7SMAwCZAUAAAFAQFAEBBUAAAFAQFAEBBUAAAFAQFAEDx/wNkh+XNTjHu7QAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"# Just a rough example to show that doing operations in Keras works. Not meant for any real purpose\n",
"# for example, the average-pooled mask doesn't make any sense \n",
"plt.figure(figsize=(20, 10))\n",
"plt.imshow(pooled_images[0, :, 60, :, 0], cmap='Greys')\n",
"plt.imshow(pooled_images[0, :, 60, :, -1], cmap='Reds', alpha=0.5)\n"
]
}
]
}