import sys
sys.path.append('./Radiology_and_AI')
from training.run_training import run_training
import torchio as tio
training_transform = tio.Compose([
tio.ZNormalization(masking_method=tio.ZNormalization.mean),
tio.RandomNoise(p=0.5),
tio.RandomGamma(log_gamma=(-0.3, 0.3)),
tio.RandomElasticDeformation(),
tio.CropOrPad((240, 240, 160)),
tio.OneHot(num_classes=5),
])
validation_transform = tio.Compose([
tio.ZNormalization(masking_method=tio.ZNormalization.mean),
tio.CropOrPad((240, 240, 160)),
tio.OneHot(num_classes=5)
])
run_training(
input_data_path = '../brats_new/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData',
output_model_path = './Models/test_train_many_1e-3.pt',
training_transform = training_transform,
validation_transform = validation_transform,
max_epochs=10,
learning_rate = 1e-3,
num_loading_cpus=2,
batch_size = 2,
train_val_split_ration=0.9,
seed=42,
amp_backend = 'apex',
amp_level = 'O1',
precision=16,
wandb_logging = True,
wandb_project_name = 'macai',
wandb_run_name = 'many_1e-3',
)