[58c332]: / RadETL / R / shiny.R

Download this file

196 lines (185 with data), 14.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#' 'RCDMShinyViewer'
#'
#' RCDMShinyViewer function visualizes result of database analysis
#'
#'
#' @param Radiology_Occurrence_Table is a result of R-CDM : Radiology_Occurrence_Table<-radiologyOccurrenceTable(DICOMList)
#' @param Radiology_Image_Table is a result of R-CDM : Radiology_Image_Table<-radiologyImageTable(DICOMList)
#' @import dplyr
#' @import shiny
#' @import ggplot2
#' @import DT
#' @importFrom magrittr "%>%"
#'
#'
#' @return result of database analysis
#' @examples
#' Radiology_Occurrence_Table<-radiologyOccurrenceTable(DICOMList)
#' Radiology_Image_Table<-radiologyImageTable(DICOMList)
#' RCDMShinyViewer(Radiology_Occurrence_Table, Radiology_Image_Table)
#' @export
RCDMShinyViewer<-function(Radiology_Occurrence_Table, Radiology_Image_Table){
ui <- fluidPage(
titlePanel('Radiology-CDM'),
sidebarLayout(
sidebarPanel(
helpText('You can see reactive result of your database analysis by selecting Occurrence date, and modality'),
sliderInput(inputId = "dateTime",
"Occurrence date",
min = min(as.Date(Radiology_Occurrence_Table$studyDateTime)),
max = max(as.Date(Radiology_Occurrence_Table$studyDateTime)+1),
value = c(as.Date('2000-01-01'), as.Date('2015-01-01'))),
selectInput('mod', 'modality', choices = unique(Radiology_Occurrence_Table$modality), multiple = T),
helpText('After you select the occurrence date, and modality, you have to select protocol concept ID, and phase additionally. After that extract list of DICOM images files corresponding to the selected conditions by clicking extract button.'),
selectInput('Pro', 'select Radiology Protocol Concept ID', choices = unique(Radiology_Occurrence_Table$radiologyProtocolConceptId), multiple = T),
selectInput('Pha', 'select Radiology Phase Concept ID', choices = unique(Radiology_Image_Table$radiologyPhaseConceptId), multiple = T),
downloadButton('downloadData', 'Extract'),
width=3),
mainPanel(
fluidRow(
h2('Database Analysis'),
column(6,
h4('Count of occurrences'),
plotOutput(outputId = "modalityCount")),
column(6,
h4('Count of images'),
plotOutput(outputId = "imageCount")),
h2('Find images you want!'),
column(12,
h4('OMOP concept IDs in your database'),
DTOutput(outputId = "protocolConceptId"),
h3(textOutput('txt')))
),
width=9)
)
)
server <- function(input, output){
output$modalityCount <- renderPlot({
modality1<-Radiology_Occurrence_Table %>% select(modality)
barplot(table(factor(modality1$modality, levels=unique(Radiology_Occurrence_Table$modality))), border="#69b3a2", col="white", ylim=c(0, max(table(modality1))))
par(new=TRUE)
modality2<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime)) %>% select(modality)
barplot(table(factor(modality2$modality, levels=unique(Radiology_Occurrence_Table$modality))), col=rgb(0.2,0.4,0.6,0.6), border="#69b3a2", ylim=c(0, max(table(modality1))))
par(new=TRUE)
modality3<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime) & modality %in% c(input$mod)) %>% select(modality)
barplot(table(factor(modality3$modality, levels=unique(Radiology_Occurrence_Table$modality))), col=7, border="#69b3a2", ylim=c(0, max(table(modality1))))
par(new=TRUE)
})
output$imageCount <- renderPlot({
image1<-Radiology_Occurrence_Table %>% select(modality)
image2<-Radiology_Occurrence_Table %>% select(imageTotalCount)
barplot(table(factor(rep(image1$modality, image2$imageTotalCount), levels=unique(Radiology_Occurrence_Table$modality))), border="#69b3a2", col="white", ylim=c(0, max(table(rep(image1$modality, image2$imageTotalCount)))))
par(new=TRUE)
image3<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime)) %>% select(modality)
image4<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime)) %>% select(imageTotalCount)
barplot(table(factor(rep(image3$modality, image4$imageTotalCount), levels=unique(Radiology_Occurrence_Table$modality))), col=rgb(0.2,0.4,0.6,0.6), border="#69b3a2", ylim=c(0, max(table(rep(image1$modality, image2$imageTotalCount)))))
par(new=TRUE)
image5<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime) & modality %in% c(input$mod)) %>% select(modality)
image6<-Radiology_Occurrence_Table %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime) & modality %in% c(input$mod)) %>% select(imageTotalCount)
barplot(table(factor(rep(image5$modality, image6$imageTotalCount), levels=unique(Radiology_Occurrence_Table$modality))), col=7, border="#69b3a2", ylim=c(0, max(table(rep(image1$modality, image2$imageTotalCount)))))
})
output$protocolConceptId <-renderDT({
RadiologyPlaybook<-unique(LoincRsnaRadiologyPlaybook[,c(2,3)])
RadiologyPlaybook<-data.frame(RadiologyPlaybook, row.names = NULL)
if(is.null(input$mod)==T){
dataframe1<-RadiologyPlaybook %>% filter(radiologyProtocolConceptId %in% Radiology_Occurrence_Table$radiologyProtocolConceptId)
dataframe5<-Radiology_Occurrence_Table %>% filter(radiologyProtocolConceptId %in% RadiologyPlaybook$radiologyProtocolConceptId & as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime)) %>% select(radiologyProtocolConceptId, imageTotalCount, radiologyOccurrenceId)
dataframe2<-split(dataframe5, as.character(dataframe5$radiologyProtocolConceptId))
dataframe2<-lapply(dataframe2, function(x){
return(data.frame(radiologyProtocolConceptId=unique(x$radiologyProtocolConceptId), Count_of_occurrences=nrow(x), Count_of_images=sum(x$imageTotalCount)))}
)
dataframe2<-do.call(rbind, dataframe2)
dataframe2<-data.frame(dataframe2, row.names = NULL)
answerDF<-merge(dataframe1, dataframe2, by='radiologyProtocolConceptId')
dataframe4<-Radiology_Occurrence_Table %>% filter(radiologyOccurrenceId %in% as.character(dataframe5$radiologyOccurrenceId)) %>% select(radiologyOccurrenceId, radiologyProtocolConceptId)
dataframe3<-Radiology_Image_Table %>% filter(radiologyOccurrenceId %in% as.character(dataframe4$radiologyOccurrenceId)) %>% select(radiologyOccurrenceId, radiologyPhaseConceptId) %>% group_by(radiologyOccurrenceId, radiologyPhaseConceptId) %>% count()
answer<-merge(dataframe4, dataframe3, by='radiologyOccurrenceId')
answer<-split(answer, as.character(answer$radiologyProtocolConceptId))
answer<-lapply(answer, function(x){
answer<-split(x, as.character(x$radiologyPhaseConceptId))
answer<-sapply(answer, function(y){
sum(y$n)
})
ImageCount<-c()
for (i in 1:length(answer)){
ImageCount<-c(ImageCount, sprintf('%s : %d', names(answer)[i], answer[i]))
}
ImageCount<-paste(ImageCount, collapse = ' / ')
return(data.frame(radiologyProtocolConceptId=unique(x$radiologyProtocolConceptId), counts=ImageCount))
})
answer<-do.call(rbind, answer)
answer<-merge(answerDF, answer, by='radiologyProtocolConceptId')
my_vals = answer$radiologyProtocolConceptId
my_colors = ifelse(my_vals %in% input$Pro,'orange','white')
datatable(answer) %>% formatStyle(
'radiologyProtocolConceptId',
target = 'row',
backgroundColor = styleEqual(my_vals, my_colors))
} else if (is.null(input$mod)==F) {
mods<-paste(input$mod, collapse ='|')
dataframe1<-RadiologyPlaybook %>% filter(radiologyProtocolConceptId %in% Radiology_Occurrence_Table$radiologyProtocolConceptId & grepl(mods, LongCommonName)==T)
dataframe5<-Radiology_Occurrence_Table %>% filter(radiologyProtocolConceptId %in% RadiologyPlaybook$radiologyProtocolConceptId & as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime)) %>% select(radiologyProtocolConceptId, imageTotalCount, radiologyOccurrenceId)
dataframe2<-split(dataframe5, as.character(dataframe5$radiologyProtocolConceptId))
dataframe2<-lapply(dataframe2, function(x){
return(data.frame(radiologyProtocolConceptId=unique(x$radiologyProtocolConceptId), Count_of_occurrences=nrow(x), Count_of_images=sum(x$imageTotalCount)))}
)
dataframe2<-do.call(rbind, dataframe2)
dataframe2<-data.frame(dataframe2, row.names = NULL)
answerDF<-merge(dataframe1, dataframe2, by='radiologyProtocolConceptId')
dataframe4<-Radiology_Occurrence_Table %>% filter(radiologyOccurrenceId %in% as.character(dataframe5$radiologyOccurrenceId)) %>% select(radiologyOccurrenceId, radiologyProtocolConceptId)
dataframe3<-Radiology_Image_Table %>% filter(radiologyOccurrenceId %in% as.character(dataframe4$radiologyOccurrenceId)) %>% select(radiologyOccurrenceId, radiologyPhaseConceptId) %>% group_by(radiologyOccurrenceId, radiologyPhaseConceptId) %>% count()
answer<-merge(dataframe4, dataframe3, by='radiologyOccurrenceId')
answer<-split(answer, as.character(answer$radiologyProtocolConceptId))
answer<-lapply(answer, function(x){
answer<-split(x, as.character(x$radiologyPhaseConceptId))
answer<-sapply(answer, function(y){
sum(y$n)
})
ImageCount<-c()
for (i in 1:length(answer)){
ImageCount<-c(ImageCount, sprintf('%s : %d', names(answer)[i], answer[i]))
}
ImageCount<-paste(ImageCount, collapse = ' / ')
return(data.frame(radiologyProtocolConceptId=unique(x$radiologyProtocolConceptId), Count_of_Images_of_each_Phase=ImageCount))
})
answer<-do.call(rbind, answer)
answer<-merge(answerDF, answer, by='radiologyProtocolConceptId')
my_vals = answer$radiologyProtocolConceptId
my_colors = ifelse(my_vals %in% input$Pro,'orange','white')
datatable(answer) %>% formatStyle(
'radiologyProtocolConceptId',
target = 'row',
backgroundColor = styleEqual(my_vals, my_colors)
)
}
})
output$txt <-renderText({
RadiologyPlaybook<-unique(LoincRsnaRadiologyPlaybook[,c(2,3)])
RadiologyPlaybook<-data.frame(RadiologyPlaybook, row.names = NULL)
answer1<-Radiology_Image_Table[, c('radiologyOccurrenceId', 'radiologyPhaseConceptId', 'dicomPath')]
answer1<-answer1 %>% filter(radiologyOccurrenceId %in% Radiology_Occurrence_Table$radiologyOccurrenceId)
answer2<-RadiologyPlaybook %>% filter(radiologyProtocolConceptId %in% Radiology_Occurrence_Table$radiologyProtocolConceptId)
answer2<-merge(Radiology_Occurrence_Table[, c('radiologyOccurrenceId', 'studyDateTime', 'modality', 'radiologyProtocolConceptId')], answer2, by='radiologyProtocolConceptId')
answer<-merge(answer1, answer2, by='radiologyOccurrenceId')
answer<-answer %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime) & grepl(paste(input$mod, collapse ='|'), LongCommonName)==T & radiologyProtocolConceptId %in% input$Pro & radiologyPhaseConceptId %in% input$Pha)
Counts<-nrow(answer)
sprintf("You have selected %d images! Now extract list of DICOM files by clicking Export button.", Counts)
})
output$downloadData <- downloadHandler(
filename = function() {
paste('List_of_DICOM_files.csv')
},
content = function(file) {
RadiologyPlaybook<-unique(LoincRsnaRadiologyPlaybook[,c(2,3)])
RadiologyPlaybook<-data.frame(RadiologyPlaybook, row.names = NULL)
answer1<-Radiology_Image_Table[, c('radiologyOccurrenceId', 'radiologyPhaseConceptId', 'dicomPath')]
answer1<-answer1 %>% filter(radiologyOccurrenceId %in% Radiology_Occurrence_Table$radiologyOccurrenceId)
answer2<-RadiologyPlaybook %>% filter(radiologyProtocolConceptId %in% Radiology_Occurrence_Table$radiologyProtocolConceptId)
answer2<-merge(Radiology_Occurrence_Table[, c('radiologyOccurrenceId', 'studyDateTime', 'modality', 'radiologyProtocolConceptId')], answer2, by='radiologyProtocolConceptId')
answer<-merge(answer1, answer2, by='radiologyOccurrenceId')
answer<-answer %>% filter(as.Date(studyDateTime) >= min(input$dateTime) & as.Date(studyDateTime) <= max(input$dateTime) & grepl(paste(input$mod, collapse ='|'), LongCommonName)==T & radiologyProtocolConceptId %in% input$Pro & radiologyPhaseConceptId %in% input$Pha)
write.csv(data.frame(answer$dicomPath, row.names = NULL), file)
})
}
shinyApp(ui=ui,server=server)
}