[4abb48]: / findings_classifier / chexpert_train.py

Download this file

245 lines (201 with data), 11.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "6"
import argparse
import json
from collections import defaultdict
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from pytorch_lightning.callbacks import ModelCheckpoint
from sklearn.metrics import accuracy_score, classification_report, jaccard_score, roc_auc_score
from torch.nn import BCEWithLogitsLoss
from torch.utils.data import DataLoader
from torchinfo import summary
from tqdm import tqdm
from transformers import AdamW
from findings_classifier.chexpert_dataset import Chexpert_Dataset
from findings_classifier.chexpert_model import ChexpertClassifier
from local_config import WANDB_ENTITY
class LitIGClassifier(pl.LightningModule):
def __init__(self, num_classes, class_names, class_weights=None, learning_rate=1e-5):
super().__init__()
# Model
self.model = ChexpertClassifier(num_classes)
# Loss with class weights
if class_weights is None:
self.criterion = BCEWithLogitsLoss()
else:
self.criterion = BCEWithLogitsLoss(pos_weight=class_weights)
# Learning rate
self.learning_rate = learning_rate
self.class_names = class_names
def forward(self, x):
return self.model(x)
def step(self, batch, batch_idx):
x, y = batch['image'].to(self.device), batch['labels'].to(self.device)
logits = self(x)
loss = self.criterion(logits, y)
# Apply sigmoid to get probabilities
preds_probs = torch.sigmoid(logits)
# Get predictions as boolean values
preds = preds_probs > 0.5
# calculate jaccard index
jaccard = jaccard_score(y.cpu().numpy(), preds.detach().cpu().numpy(), average='samples')
class_report = classification_report(y.cpu().numpy(), preds.detach().cpu().numpy(), output_dict=True)
# scores = class_report['micro avg']
scores = class_report['macro avg']
metrics_per_label = {label: metrics for label, metrics in class_report.items() if label.isdigit()}
f1 = scores['f1-score']
rec = scores['recall']
prec = scores['precision']
acc = accuracy_score(y.cpu().numpy().flatten(), preds.detach().cpu().numpy().flatten())
try:
auc = roc_auc_score(y.cpu().numpy().flatten(), preds_probs.detach().cpu().numpy().flatten())
except Exception as e:
auc = 0.
return loss, acc, f1, rec, prec, jaccard, auc, metrics_per_label
def training_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, _ = self.step(batch, batch_idx)
train_stats = {'loss': loss, 'train_acc': acc, 'train_f1': f1, 'train_rec': rec, 'train_prec': prec, 'train_jaccard': jaccard,
'train_auc': auc}
wandb_run.log(train_stats)
return train_stats
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
avg_acc = np.mean([x['train_acc'] for x in outputs])
avg_f1 = np.mean([x['train_f1'] for x in outputs])
avg_rec = np.mean([x['train_rec'] for x in outputs])
avg_prec = np.mean([x['train_prec'] for x in outputs])
avg_jaccard = np.mean([x['train_jaccard'] for x in outputs])
avg_auc = np.mean([x['train_auc'] for x in outputs])
wandb_run.log({'epoch_train_loss': avg_loss, 'epoch_train_acc': avg_acc, 'epoch_train_f1': avg_f1, 'epoch_train_rec': avg_rec,
'epoch_train_prec': avg_prec, 'epoch_train_jaccard': avg_jaccard, 'epoch_train_auc': avg_auc})
def validation_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, metrics_per_label = self.step(batch, batch_idx)
# log f1 for checkpoint callback
self.log('val_f1', f1)
return {'val_loss': loss, 'val_acc': acc, 'val_f1': f1, 'val_rec': rec, 'val_prec': prec, 'val_jaccard': jaccard,
'val_auc': auc}, metrics_per_label
def validation_epoch_end(self, outputs):
outputs, per_label_metrics_outputs = zip(*outputs)
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_acc = np.mean([x['val_acc'] for x in outputs])
avg_f1 = np.mean([x['val_f1'] for x in outputs])
avg_rec = np.mean([x['val_rec'] for x in outputs])
avg_prec = np.mean([x['val_prec'] for x in outputs])
avg_jaccard = np.mean([x['val_jaccard'] for x in outputs])
avg_auc = np.mean([x['val_auc'] for x in outputs])
per_label_metrics = defaultdict(lambda: defaultdict(float))
label_counts = defaultdict(int)
for metrics_per_label in per_label_metrics_outputs:
for label, metrics in metrics_per_label.items():
label_name = self.class_names[int(label)]
per_label_metrics[label_name]['precision'] += metrics['precision']
per_label_metrics[label_name]['recall'] += metrics['recall']
per_label_metrics[label_name]['f1-score'] += metrics['f1-score']
per_label_metrics[label_name]['support'] += metrics['support']
label_counts[label_name] += 1
# Average the metrics
for label, metrics in per_label_metrics.items():
for metric_name in ['precision', 'recall', 'f1-score']:
if metrics['support'] > 0:
per_label_metrics[label][metric_name] /= label_counts[label]
val_stats = {'val_loss': avg_loss, 'val_acc': avg_acc, 'val_f1': avg_f1, 'val_rec': avg_rec, 'val_prec': avg_prec, 'val_jaccard': avg_jaccard,
'val_auc': avg_auc}
wandb_run.log(val_stats)
def test_step(self, batch, batch_idx):
loss, acc, f1, rec, prec, jaccard, auc, _ = self.step(batch, batch_idx)
return {'test_loss': loss, 'test_acc': acc, 'test_f1': f1, 'test_rec': rec, 'test_prec': prec, 'test_jaccard': jaccard, 'test_auc': auc}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
avg_acc = np.mean([x['test_acc'] for x in outputs])
avg_f1 = np.mean([x['test_f1'] for x in outputs])
avg_rec = np.mean([x['test_rec'] for x in outputs])
avg_prec = np.mean([x['test_prec'] for x in outputs])
avg_jaccard = np.mean([x['test_jaccard'] for x in outputs])
avg_auc = np.mean([x['test_auc'] for x in outputs])
test_stats = {'test_loss': avg_loss, 'test_acc': avg_acc, 'test_f1': avg_f1, 'test_rec': avg_rec, 'test_prec': avg_prec,
'test_jaccard': avg_jaccard, 'test_auc': avg_auc}
wandb_run.log(test_stats)
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate)
return optimizer
def save_preds(dataloader, split):
# load checkpoint
ckpt_path = f"findings_classifier/checkpoints/chexpert_train/ChexpertClassifier-epoch=06-val_f1=0.36.ckpt"
model = LitIGClassifier.load_from_checkpoint(ckpt_path, num_classes=num_classes, class_weights=val_dataset.get_class_weights(),
class_names=class_names, learning_rate=args.lr)
model.eval()
model.cuda()
model.half()
class_names_np = np.asarray(class_names)
# get predictions for all study ids
structured_preds = {}
for batch in tqdm(dataloader):
dicom_ids = batch['dicom_id']
logits = model(batch['image'].half().cuda())
preds_probs = torch.sigmoid(logits)
preds = preds_probs > 0.5
# iterate over each study id in the batch
for i, (dicom_id, pred) in enumerate(zip(dicom_ids, preds.detach().cpu())):
# get all positive labels
findings = class_names_np[pred].tolist()
structured_preds[dicom_id] = findings
# save predictions
with open(f"findings_classifier/predictions/structured_preds_chexpert_log_weighting_macro_{split}.json", "w") as f:
json.dump(structured_preds, f, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", type=str, default="debug")
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--epochs", type=int, default=6)
parser.add_argument("--loss_weighting", type=str, default="log", choices=["lin", "log", "none"])
parser.add_argument("--truncate", type=int, default=None)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--num_workers", type=int, default=12)
parser.add_argument("--use_augs", action="store_true", default=False)
parser.add_argument("--train", action="store_true", default=False)
args = parser.parse_args()
TRAIN = args.train
# fix all seeds
pl.seed_everything(42, workers=True)
# Create DataLoaders
train_dataset = Chexpert_Dataset(split='train', truncate=args.truncate, loss_weighting=args.loss_weighting, use_augs=args.use_augs)
val_dataset = Chexpert_Dataset(split='validate', truncate=args.truncate)
test_dataset = Chexpert_Dataset(split='test')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
# Number of classes for IGClassifier
num_classes = len(train_dataset.chexpert_cols)
class_names = train_dataset.chexpert_cols
if TRAIN:
class_weights = torch.tensor(train_dataset.get_class_weights(), dtype=torch.float32)
# Define the model
lit_model = LitIGClassifier(num_classes, class_names=class_names, class_weights=class_weights, learning_rate=args.lr)
print(summary(lit_model))
# WandB logger
wandb_run = wandb.init(
project="ChexpertClassifier",
entity= WANDB_ENTITY,
name=args.run_name
)
# checkpoint callback
checkpoint_callback = ModelCheckpoint(
monitor='val_f1',
dirpath=f'findings_classifier/checkpoints/{args.run_name}',
filename='ChexpertClassifier-{epoch:02d}-{val_f1:.2f}',
save_top_k=1,
save_last=True,
mode='max',
)
# Train the model
trainer = pl.Trainer(max_epochs=args.epochs, gpus=1, callbacks=[checkpoint_callback], benchmark=False, deterministic=True, precision=16)
trainer.fit(lit_model, train_dataloader, val_dataloader)
# Test the model
# trainer.validate(lit_model, val_dataloader, ckpt_path="checkpoints_IGCLassifier/lr_5e-5_to0_log_weighting_patches_augs_imgemb/IGClassifier-epoch=09-val_f1=0.65.ckpt")
else:
save_preds(train_dataloader, "train")
save_preds(val_dataloader, "val")
save_preds(test_dataloader, "test")