|
a |
|
b/model/lavis/tasks/base_task.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2022, salesforce.com, inc. |
|
|
3 |
All rights reserved. |
|
|
4 |
SPDX-License-Identifier: BSD-3-Clause |
|
|
5 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import logging |
|
|
9 |
import os |
|
|
10 |
|
|
|
11 |
import torch |
|
|
12 |
import torch.distributed as dist |
|
|
13 |
from model.lavis.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized |
|
|
14 |
from model.lavis.common.logger import MetricLogger, SmoothedValue |
|
|
15 |
from model.lavis.common.registry import registry |
|
|
16 |
from model.lavis.datasets.data_utils import prepare_sample |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
class BaseTask: |
|
|
20 |
def __init__(self, **kwargs): |
|
|
21 |
super().__init__() |
|
|
22 |
|
|
|
23 |
self.inst_id_key = "instance_id" |
|
|
24 |
|
|
|
25 |
@classmethod |
|
|
26 |
def setup_task(cls, **kwargs): |
|
|
27 |
return cls() |
|
|
28 |
|
|
|
29 |
def build_model(self, cfg): |
|
|
30 |
model_config = cfg.model_cfg |
|
|
31 |
|
|
|
32 |
model_cls = registry.get_model_class(model_config.arch) |
|
|
33 |
return model_cls.from_config(model_config) |
|
|
34 |
|
|
|
35 |
def build_datasets(self, cfg): |
|
|
36 |
""" |
|
|
37 |
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. |
|
|
38 |
Download dataset and annotations automatically if not exist. |
|
|
39 |
|
|
|
40 |
Args: |
|
|
41 |
cfg (common.config.Config): _description_ |
|
|
42 |
|
|
|
43 |
Returns: |
|
|
44 |
dict: Dictionary of torch.utils.data.Dataset objects by split. |
|
|
45 |
""" |
|
|
46 |
|
|
|
47 |
datasets = dict() |
|
|
48 |
|
|
|
49 |
datasets_config = cfg.datasets_cfg |
|
|
50 |
|
|
|
51 |
assert len(datasets_config) > 0, "At least one dataset has to be specified." |
|
|
52 |
|
|
|
53 |
for name in datasets_config: |
|
|
54 |
dataset_config = datasets_config[name] |
|
|
55 |
|
|
|
56 |
builder = registry.get_builder_class(name)(dataset_config) |
|
|
57 |
dataset = builder.build_datasets() |
|
|
58 |
|
|
|
59 |
datasets[name] = dataset |
|
|
60 |
|
|
|
61 |
return datasets |
|
|
62 |
|
|
|
63 |
def train_step(self, model, samples): |
|
|
64 |
output = model(samples) |
|
|
65 |
loss_dict = {} |
|
|
66 |
for k,v in output.items(): |
|
|
67 |
if "loss" in k: |
|
|
68 |
loss_dict[k] = v |
|
|
69 |
return output["loss"], loss_dict |
|
|
70 |
|
|
|
71 |
def valid_step(self, model, samples): |
|
|
72 |
raise NotImplementedError |
|
|
73 |
|
|
|
74 |
def before_evaluation(self, model, dataset, **kwargs): |
|
|
75 |
model.before_evaluation(dataset=dataset, task_type=type(self)) |
|
|
76 |
|
|
|
77 |
def after_evaluation(self, **kwargs): |
|
|
78 |
pass |
|
|
79 |
|
|
|
80 |
def inference_step(self): |
|
|
81 |
raise NotImplementedError |
|
|
82 |
|
|
|
83 |
def evaluation(self, model, data_loader, cuda_enabled=True): |
|
|
84 |
metric_logger = MetricLogger(delimiter=" ") |
|
|
85 |
header = "Evaluation" |
|
|
86 |
# TODO make it configurable |
|
|
87 |
print_freq = 10 |
|
|
88 |
|
|
|
89 |
results = [] |
|
|
90 |
|
|
|
91 |
for samples in metric_logger.log_every(data_loader, print_freq, header): |
|
|
92 |
samples = prepare_sample(samples, cuda_enabled=cuda_enabled) |
|
|
93 |
|
|
|
94 |
eval_output = self.valid_step(model=model, samples=samples) |
|
|
95 |
results.extend(eval_output) |
|
|
96 |
|
|
|
97 |
if is_dist_avail_and_initialized(): |
|
|
98 |
dist.barrier() |
|
|
99 |
|
|
|
100 |
return results |
|
|
101 |
|
|
|
102 |
def train_epoch( |
|
|
103 |
self, |
|
|
104 |
epoch, |
|
|
105 |
model, |
|
|
106 |
data_loader, |
|
|
107 |
optimizer, |
|
|
108 |
lr_scheduler, |
|
|
109 |
scaler=None, |
|
|
110 |
cuda_enabled=False, |
|
|
111 |
log_freq=50, |
|
|
112 |
accum_grad_iters=1, |
|
|
113 |
): |
|
|
114 |
return self._train_inner_loop( |
|
|
115 |
epoch=epoch, |
|
|
116 |
iters_per_epoch=len(data_loader), |
|
|
117 |
model=model, |
|
|
118 |
data_loader=data_loader, |
|
|
119 |
optimizer=optimizer, |
|
|
120 |
scaler=scaler, |
|
|
121 |
lr_scheduler=lr_scheduler, |
|
|
122 |
log_freq=log_freq, |
|
|
123 |
cuda_enabled=cuda_enabled, |
|
|
124 |
accum_grad_iters=accum_grad_iters, |
|
|
125 |
) |
|
|
126 |
|
|
|
127 |
def train_iters( |
|
|
128 |
self, |
|
|
129 |
epoch, |
|
|
130 |
start_iters, |
|
|
131 |
iters_per_inner_epoch, |
|
|
132 |
model, |
|
|
133 |
data_loader, |
|
|
134 |
optimizer, |
|
|
135 |
lr_scheduler, |
|
|
136 |
scaler=None, |
|
|
137 |
cuda_enabled=False, |
|
|
138 |
log_freq=50, |
|
|
139 |
accum_grad_iters=1, |
|
|
140 |
): |
|
|
141 |
return self._train_inner_loop( |
|
|
142 |
epoch=epoch, |
|
|
143 |
start_iters=start_iters, |
|
|
144 |
iters_per_epoch=iters_per_inner_epoch, |
|
|
145 |
model=model, |
|
|
146 |
data_loader=data_loader, |
|
|
147 |
optimizer=optimizer, |
|
|
148 |
scaler=scaler, |
|
|
149 |
lr_scheduler=lr_scheduler, |
|
|
150 |
log_freq=log_freq, |
|
|
151 |
cuda_enabled=cuda_enabled, |
|
|
152 |
accum_grad_iters=accum_grad_iters, |
|
|
153 |
) |
|
|
154 |
|
|
|
155 |
def _train_inner_loop( |
|
|
156 |
self, |
|
|
157 |
epoch, |
|
|
158 |
iters_per_epoch, |
|
|
159 |
model, |
|
|
160 |
data_loader, |
|
|
161 |
optimizer, |
|
|
162 |
lr_scheduler, |
|
|
163 |
scaler=None, |
|
|
164 |
start_iters=None, |
|
|
165 |
log_freq=50, |
|
|
166 |
cuda_enabled=False, |
|
|
167 |
accum_grad_iters=1, |
|
|
168 |
): |
|
|
169 |
""" |
|
|
170 |
An inner training loop compatible with both epoch-based and iter-based training. |
|
|
171 |
|
|
|
172 |
When using epoch-based, training stops after one epoch; when using iter-based, |
|
|
173 |
training stops after #iters_per_epoch iterations. |
|
|
174 |
""" |
|
|
175 |
use_amp = scaler is not None |
|
|
176 |
|
|
|
177 |
if not hasattr(data_loader, "__next__"): |
|
|
178 |
# convert to iterator if not already |
|
|
179 |
data_loader = iter(data_loader) |
|
|
180 |
|
|
|
181 |
metric_logger = MetricLogger(delimiter=" ") |
|
|
182 |
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) |
|
|
183 |
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) |
|
|
184 |
|
|
|
185 |
# if iter-based runner, schedule lr based on inner epoch. |
|
|
186 |
logging.info( |
|
|
187 |
"Start training epoch {}, {} iters per inner epoch.".format( |
|
|
188 |
epoch, iters_per_epoch |
|
|
189 |
) |
|
|
190 |
) |
|
|
191 |
header = "Train: data epoch: [{}]".format(epoch) |
|
|
192 |
if start_iters is None: |
|
|
193 |
# epoch-based runner |
|
|
194 |
inner_epoch = epoch |
|
|
195 |
else: |
|
|
196 |
# In iter-based runner, we schedule the learning rate based on iterations. |
|
|
197 |
inner_epoch = start_iters // iters_per_epoch |
|
|
198 |
header = header + "; inner epoch [{}]".format(inner_epoch) |
|
|
199 |
|
|
|
200 |
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): |
|
|
201 |
# if using iter-based runner, we stop after iters_per_epoch iterations. |
|
|
202 |
if i >= iters_per_epoch: |
|
|
203 |
break |
|
|
204 |
|
|
|
205 |
samples = next(data_loader) |
|
|
206 |
|
|
|
207 |
samples = prepare_sample(samples, cuda_enabled=cuda_enabled) |
|
|
208 |
samples.update( |
|
|
209 |
{ |
|
|
210 |
"epoch": inner_epoch, |
|
|
211 |
"num_iters_per_epoch": iters_per_epoch, |
|
|
212 |
"iters": i, |
|
|
213 |
} |
|
|
214 |
) |
|
|
215 |
|
|
|
216 |
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) |
|
|
217 |
|
|
|
218 |
with torch.cuda.amp.autocast(enabled=use_amp): |
|
|
219 |
loss, loss_dict = self.train_step(model=model, samples=samples) |
|
|
220 |
loss /= accum_grad_iters #TODO: not affect loss_dict values for logging |
|
|
221 |
|
|
|
222 |
# after_train_step() |
|
|
223 |
if use_amp: |
|
|
224 |
scaler.scale(loss).backward() |
|
|
225 |
else: |
|
|
226 |
loss.backward() |
|
|
227 |
|
|
|
228 |
# update gradients every accum_grad_iters iterations |
|
|
229 |
if (i + 1) % accum_grad_iters == 0: |
|
|
230 |
if use_amp: |
|
|
231 |
scaler.step(optimizer) |
|
|
232 |
scaler.update() |
|
|
233 |
else: |
|
|
234 |
optimizer.step() |
|
|
235 |
optimizer.zero_grad() |
|
|
236 |
|
|
|
237 |
metric_logger.update(**loss_dict) |
|
|
238 |
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) |
|
|
239 |
|
|
|
240 |
# after train_epoch() |
|
|
241 |
# gather the stats from all processes |
|
|
242 |
metric_logger.synchronize_between_processes() |
|
|
243 |
logging.info("Averaged stats: " + str(metric_logger.global_avg())) |
|
|
244 |
return { |
|
|
245 |
k: "{:.3f}".format(meter.global_avg) |
|
|
246 |
for k, meter in metric_logger.meters.items() |
|
|
247 |
} |
|
|
248 |
|
|
|
249 |
@staticmethod |
|
|
250 |
def save_result(result, result_dir, filename, remove_duplicate=""): |
|
|
251 |
import json |
|
|
252 |
|
|
|
253 |
result_file = os.path.join( |
|
|
254 |
result_dir, "%s_rank%d.json" % (filename, get_rank()) |
|
|
255 |
) |
|
|
256 |
final_result_file = os.path.join(result_dir, "%s.json" % filename) |
|
|
257 |
|
|
|
258 |
json.dump(result, open(result_file, "w")) |
|
|
259 |
|
|
|
260 |
if is_dist_avail_and_initialized(): |
|
|
261 |
dist.barrier() |
|
|
262 |
|
|
|
263 |
if is_main_process(): |
|
|
264 |
logging.warning("rank %d starts merging results." % get_rank()) |
|
|
265 |
# combine results from all processes |
|
|
266 |
result = [] |
|
|
267 |
|
|
|
268 |
for rank in range(get_world_size()): |
|
|
269 |
result_file = os.path.join( |
|
|
270 |
result_dir, "%s_rank%d.json" % (filename, rank) |
|
|
271 |
) |
|
|
272 |
res = json.load(open(result_file, "r")) |
|
|
273 |
result += res |
|
|
274 |
|
|
|
275 |
if remove_duplicate: |
|
|
276 |
result_new = [] |
|
|
277 |
id_list = [] |
|
|
278 |
for res in result: |
|
|
279 |
if res[remove_duplicate] not in id_list: |
|
|
280 |
id_list.append(res[remove_duplicate]) |
|
|
281 |
result_new.append(res) |
|
|
282 |
result = result_new |
|
|
283 |
|
|
|
284 |
json.dump(result, open(final_result_file, "w")) |
|
|
285 |
print("result file saved to %s" % final_result_file) |
|
|
286 |
|
|
|
287 |
return final_result_file |