--- a +++ b/model/lavis/common/optims.py @@ -0,0 +1,117 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import math + +from model.lavis.common.registry import registry + + +@registry.register_lr_scheduler("linear_warmup_step_lr") +class LinearWarmupStepLRScheduler: + def __init__( + self, + optimizer, + max_epoch, + min_lr, + init_lr, + decay_rate=1, + warmup_start_lr=-1, + warmup_steps=0, + **kwargs + ): + self.optimizer = optimizer + + self.max_epoch = max_epoch + self.min_lr = min_lr + + self.decay_rate = decay_rate + + self.init_lr = init_lr + self.warmup_steps = warmup_steps + self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr + + def step(self, cur_epoch, cur_step): + if cur_epoch == 0: + warmup_lr_schedule( + step=cur_step, + optimizer=self.optimizer, + max_step=self.warmup_steps, + init_lr=self.warmup_start_lr, + max_lr=self.init_lr, + ) + else: + step_lr_schedule( + epoch=cur_epoch, + optimizer=self.optimizer, + init_lr=self.init_lr, + min_lr=self.min_lr, + decay_rate=self.decay_rate, + ) + + +@registry.register_lr_scheduler("linear_warmup_cosine_lr") +class LinearWarmupCosineLRScheduler: + def __init__( + self, + optimizer, + max_epoch, + min_lr, + init_lr, + warmup_steps=0, + warmup_start_lr=-1, + **kwargs + ): + self.optimizer = optimizer + + self.max_epoch = max_epoch + self.min_lr = min_lr + + self.init_lr = init_lr + self.warmup_steps = warmup_steps + self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr + + def step(self, cur_epoch, cur_step): + # assuming the warmup iters less than one epoch + if cur_epoch == 0: + warmup_lr_schedule( + step=cur_step, + optimizer=self.optimizer, + max_step=self.warmup_steps, + init_lr=self.warmup_start_lr, + max_lr=self.init_lr, + ) + else: + cosine_lr_schedule( + epoch=cur_epoch, + optimizer=self.optimizer, + max_epoch=self.max_epoch, + init_lr=self.init_lr, + min_lr=self.min_lr, + ) + + +def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): + """Decay the learning rate""" + lr = (init_lr - min_lr) * 0.5 * ( + 1.0 + math.cos(math.pi * epoch / max_epoch) + ) + min_lr + for param_group in optimizer.param_groups: + param_group["lr"] = lr + + +def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr): + """Warmup the learning rate""" + lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(max_step, 1)) + for param_group in optimizer.param_groups: + param_group["lr"] = lr + + +def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate): + """Decay the learning rate""" + lr = max(min_lr, init_lr * (decay_rate**epoch)) + for param_group in optimizer.param_groups: + param_group["lr"] = lr