|
a |
|
b/mimic-cxr/create_section_files.py |
|
|
1 |
# This script extracts the conclusion section from MIMIC-CXR reports |
|
|
2 |
# It outputs them into individual files with at most 10,000 reports. |
|
|
3 |
import json |
|
|
4 |
import sys |
|
|
5 |
import os |
|
|
6 |
import argparse |
|
|
7 |
import csv |
|
|
8 |
from pathlib import Path |
|
|
9 |
|
|
|
10 |
from tqdm import tqdm |
|
|
11 |
|
|
|
12 |
# local folder import |
|
|
13 |
import section_parser as sp |
|
|
14 |
from local_config import PATH_TO_MIMIC_CXR |
|
|
15 |
|
|
|
16 |
parser = argparse.ArgumentParser() |
|
|
17 |
parser.add_argument('--reports_path', |
|
|
18 |
default=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-reports/files", |
|
|
19 |
help=('Path to file with radiology reports,' |
|
|
20 |
' e.g. /data/mimic-cxr/files')) |
|
|
21 |
parser.add_argument('--mimic_cxr_jpg_path', |
|
|
22 |
default=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0/files", |
|
|
23 |
help=('Path to file with radiology reports,' |
|
|
24 |
' e.g. /data/mimic-cxr/files')) |
|
|
25 |
parser.add_argument('--output_path', |
|
|
26 |
default='reports_processed', |
|
|
27 |
help='Path to output CSV files.') |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
def list_rindex(l, s): |
|
|
31 |
"""Helper function: *last* matching element in a list""" |
|
|
32 |
return len(l) - l[-1::-1].index(s) - 1 |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def main(args): |
|
|
36 |
args = parser.parse_args(args) |
|
|
37 |
|
|
|
38 |
reports_path = Path(args.reports_path) |
|
|
39 |
mimic_cxr_jpg_path = Path(args.mimic_cxr_jpg_path) |
|
|
40 |
output_path = Path(args.output_path) |
|
|
41 |
|
|
|
42 |
if not output_path.exists(): |
|
|
43 |
output_path.mkdir() |
|
|
44 |
|
|
|
45 |
# not all reports can be automatically sectioned |
|
|
46 |
# we load in some dictionaries which have manually determined sections |
|
|
47 |
custom_section_names, custom_indices = sp.custom_mimic_cxr_rules() |
|
|
48 |
|
|
|
49 |
# get all higher up folders (p00, p01, etc) |
|
|
50 |
p_grp_folders = os.listdir(reports_path) |
|
|
51 |
p_grp_folders = [p for p in p_grp_folders |
|
|
52 |
if p.startswith('p') and len(p) == 3] |
|
|
53 |
p_grp_folders.sort() |
|
|
54 |
|
|
|
55 |
# study_sections will have an element for each study |
|
|
56 |
# this element will be a list, each element having text for a specific section |
|
|
57 |
study_sections = [] |
|
|
58 |
for p_grp in p_grp_folders: |
|
|
59 |
# get patient folders, usually around ~6k per group folder |
|
|
60 |
cxr_path = reports_path / p_grp |
|
|
61 |
p_folders = os.listdir(cxr_path) |
|
|
62 |
p_folders = [p for p in p_folders if p.startswith('p')] |
|
|
63 |
p_folders.sort() |
|
|
64 |
|
|
|
65 |
# For each patient in this grouping folder |
|
|
66 |
print(p_grp) |
|
|
67 |
for p in tqdm(p_folders): |
|
|
68 |
patient_path = cxr_path / p |
|
|
69 |
|
|
|
70 |
# get the filename for all their free-text reports |
|
|
71 |
studies = os.listdir(patient_path) |
|
|
72 |
studies = [s for s in studies if s.startswith('s')] |
|
|
73 |
|
|
|
74 |
for s in studies: |
|
|
75 |
|
|
|
76 |
img_path = mimic_cxr_jpg_path / p_grp / p / s.replace('.txt', '') |
|
|
77 |
corr_dicom_ids = os.listdir(img_path) |
|
|
78 |
corr_dicom_ids = [d.replace('.jpg', '') for d in corr_dicom_ids if d.endswith('.jpg')] |
|
|
79 |
# load in the free-text report |
|
|
80 |
with open(patient_path / s, 'r') as fp: |
|
|
81 |
text = ''.join(fp.readlines()) |
|
|
82 |
|
|
|
83 |
# get study string name without the txt extension |
|
|
84 |
s_stem = s[0:-4] |
|
|
85 |
|
|
|
86 |
# split text into sections |
|
|
87 |
sections, section_names, section_idx = sp.section_text( |
|
|
88 |
text |
|
|
89 |
) |
|
|
90 |
|
|
|
91 |
study_sectioned = [s_stem] |
|
|
92 |
for sn in ('impression', 'findings', |
|
|
93 |
'last_paragraph', 'comparison'): |
|
|
94 |
if sn in section_names: |
|
|
95 |
idx = list_rindex(section_names, sn) |
|
|
96 |
study_sectioned.append(sections[idx].strip()) |
|
|
97 |
else: |
|
|
98 |
study_sectioned.append(None) |
|
|
99 |
# append once per dicom_id |
|
|
100 |
for dicom_id in corr_dicom_ids: |
|
|
101 |
study_sectioned_copy = study_sectioned.copy() |
|
|
102 |
study_sectioned_copy.append(dicom_id) |
|
|
103 |
study_sectioned_copy.append(f"{dicom_id}.jpg") |
|
|
104 |
study_sectioned_copy.append(Path("files")/p_grp / p / s.replace('.txt', '')) |
|
|
105 |
study_sectioned_copy.append(f'{s_stem}.txt') |
|
|
106 |
study_sections.append(study_sectioned_copy) |
|
|
107 |
|
|
|
108 |
# write out a single CSV with the sections |
|
|
109 |
with open(output_path / 'mimic_cxr_sectioned.csv', 'w') as fp: |
|
|
110 |
csvwriter = csv.writer(fp) |
|
|
111 |
# write header |
|
|
112 |
csvwriter.writerow(['impression', 'findings', 'last_paragraph', 'comparison', 'dicom_id', 'Img_Filename', 'Img_Folder', 'Note_file']) |
|
|
113 |
for row in study_sections: |
|
|
114 |
csvwriter.writerow(row) |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
if __name__ == '__main__': |
|
|
118 |
main(sys.argv[1:]) |