|
a |
|
b/finetune.py |
|
|
1 |
import os |
|
|
2 |
import pickle |
|
|
3 |
import random |
|
|
4 |
import sys |
|
|
5 |
from typing import List, Optional |
|
|
6 |
|
|
|
7 |
import fire |
|
|
8 |
import torch |
|
|
9 |
import transformers |
|
|
10 |
from datasets import load_dataset |
|
|
11 |
import wandb |
|
|
12 |
|
|
|
13 |
from torch import nn |
|
|
14 |
from torch.utils.data import Sampler |
|
|
15 |
from transformers.modeling_utils import unwrap_model |
|
|
16 |
|
|
|
17 |
from local_config import WANDB_ENTITY |
|
|
18 |
from utils.datacollator import MyDataCollatorForSeq2Seq |
|
|
19 |
from model.lavis.models.blip2_models.modeling_llama_imgemb import LlamaForCausalLM |
|
|
20 |
|
|
|
21 |
from peft import ( |
|
|
22 |
LoraConfig, |
|
|
23 |
get_peft_model, |
|
|
24 |
get_peft_model_state_dict, |
|
|
25 |
prepare_model_for_int8_training, |
|
|
26 |
set_peft_model_state_dict, |
|
|
27 |
) |
|
|
28 |
from transformers import AutoTokenizer, PreTrainedModel |
|
|
29 |
|
|
|
30 |
from utils.prompter import Prompter |
|
|
31 |
|
|
|
32 |
import logging |
|
|
33 |
logger = logging.getLogger(__name__) |
|
|
34 |
|
|
|
35 |
#how are input and instruction put together: |
|
|
36 |
''' |
|
|
37 |
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
38 |
|
|
|
39 |
### Instruction: |
|
|
40 |
{instruction} |
|
|
41 |
|
|
|
42 |
### Response: |
|
|
43 |
|
|
|
44 |
or |
|
|
45 |
|
|
|
46 |
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
47 |
|
|
|
48 |
### Instruction: |
|
|
49 |
{instruction} |
|
|
50 |
|
|
|
51 |
### Input: |
|
|
52 |
{input} |
|
|
53 |
|
|
|
54 |
### Response: |
|
|
55 |
''' |
|
|
56 |
|
|
|
57 |
class BalancedSampler(Sampler): |
|
|
58 |
def __init__(self, true_indices, false_indices): |
|
|
59 |
self.true_indices = true_indices |
|
|
60 |
self.false_indices = false_indices |
|
|
61 |
self.num_samples = 2 * min(len(self.true_indices), len(self.false_indices)) |
|
|
62 |
|
|
|
63 |
def __iter__(self): |
|
|
64 |
# Randomly sample from true_indices |
|
|
65 |
sampled_true_indices = random.sample(self.true_indices, len(self.false_indices)) |
|
|
66 |
# Merge and shuffle the two lists of indices |
|
|
67 |
indices = sampled_true_indices + self.false_indices |
|
|
68 |
random.shuffle(indices) |
|
|
69 |
return iter(indices) |
|
|
70 |
|
|
|
71 |
def __len__(self): |
|
|
72 |
return self.num_samples |
|
|
73 |
|
|
|
74 |
class InstructTrainer(transformers.Trainer): |
|
|
75 |
def __init__(self, *args, rep_idxs=None, inst_idxs=None, **kwargs): |
|
|
76 |
super().__init__(*args, **kwargs) |
|
|
77 |
self.rep_idxs = rep_idxs |
|
|
78 |
self.inst_idxs = inst_idxs |
|
|
79 |
|
|
|
80 |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: |
|
|
81 |
return BalancedSampler(self.rep_idxs, self.inst_idxs) |
|
|
82 |
|
|
|
83 |
WEIGHTS_NAME = "pytorch_model.bin" |
|
|
84 |
WEIGHTS_NAME_FINAL = "adapter_model.bin" |
|
|
85 |
TRAINING_ARGS_NAME = "training_args.bin" |
|
|
86 |
class ImgTrainer(transformers.Trainer): #also save img projector |
|
|
87 |
def _save(self, output_dir: Optional[str] = None, state_dict=None): |
|
|
88 |
# If we are executing this function, we are the process zero, so we don't check for that. |
|
|
89 |
output_dir = output_dir if output_dir is not None else self.args.output_dir |
|
|
90 |
os.makedirs(output_dir, exist_ok=True) |
|
|
91 |
logger.info(f"Saving model checkpoint to {output_dir}") |
|
|
92 |
# Save a trained model and configuration using `save_pretrained()`. |
|
|
93 |
# They can then be reloaded using `from_pretrained()` |
|
|
94 |
if not isinstance(self.model, PreTrainedModel): |
|
|
95 |
if state_dict is None: |
|
|
96 |
state_dict = self.model.state_dict() |
|
|
97 |
base_state_dict = self.model.base_model.state_dict() |
|
|
98 |
if 'model.model.img_proj_layer.weight' in base_state_dict: |
|
|
99 |
state_dict['base_model.model.model.img_proj_layer.weight'] = base_state_dict['model.model.img_proj_layer.weight'] |
|
|
100 |
state_dict['base_model.model.model.img_proj_layer.bias'] = base_state_dict['model.model.img_proj_layer.bias'] |
|
|
101 |
|
|
|
102 |
if isinstance(unwrap_model(self.model), PreTrainedModel): |
|
|
103 |
unwrap_model(self.model).save_pretrained( |
|
|
104 |
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors |
|
|
105 |
) |
|
|
106 |
else: |
|
|
107 |
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") |
|
|
108 |
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) |
|
|
109 |
else: |
|
|
110 |
self.model.save_pretrained( |
|
|
111 |
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors |
|
|
112 |
) |
|
|
113 |
|
|
|
114 |
if self.tokenizer is not None: |
|
|
115 |
self.tokenizer.save_pretrained(output_dir) |
|
|
116 |
|
|
|
117 |
# Good practice: save your training arguments together with the trained model |
|
|
118 |
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME)) |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
def save_pretrained(model, save_directory, **kwargs): |
|
|
122 |
r""" |
|
|
123 |
This function saves the adapter model and the adapter configuration files to a directory, so that it can be |
|
|
124 |
reloaded using the [`LoraModel.from_pretrained`] class method, and also used by the [`LoraModel.push_to_hub`] |
|
|
125 |
method. |
|
|
126 |
|
|
|
127 |
Args: |
|
|
128 |
save_directory (`str`): |
|
|
129 |
Directory where the adapter model and configuration files will be saved (will be created if it does not |
|
|
130 |
exist). |
|
|
131 |
kwargs (additional keyword arguments, *optional*): |
|
|
132 |
Additional keyword arguments passed along to the `push_to_hub` method. |
|
|
133 |
""" |
|
|
134 |
if os.path.isfile(save_directory): |
|
|
135 |
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
136 |
os.makedirs(save_directory, exist_ok=True) |
|
|
137 |
|
|
|
138 |
# save only the trainable weights |
|
|
139 |
output_state_dict = get_peft_model_state_dict(model, kwargs.get("state_dict", None)) |
|
|
140 |
base_state_dict = model.base_model.state_dict() |
|
|
141 |
if 'model.model.img_proj_layer.weight' in base_state_dict: |
|
|
142 |
output_state_dict['base_model.model.model.img_proj_layer.weight'] = base_state_dict['model.model.img_proj_layer.weight'] |
|
|
143 |
output_state_dict['base_model.model.model.img_proj_layer.bias'] = base_state_dict['model.model.img_proj_layer.bias'] |
|
|
144 |
|
|
|
145 |
torch.save(output_state_dict, os.path.join(save_directory, WEIGHTS_NAME_FINAL)) |
|
|
146 |
|
|
|
147 |
inference_mode = model.peft_config.inference_mode |
|
|
148 |
model.peft_config.inference_mode = True |
|
|
149 |
model.peft_config.save_pretrained(save_directory) |
|
|
150 |
model.peft_config.inference_mode = inference_mode |
|
|
151 |
|
|
|
152 |
|
|
|
153 |
def train( |
|
|
154 |
# model/data params |
|
|
155 |
base_model: str = "", # the only required argument |
|
|
156 |
lora_weights: str = None, |
|
|
157 |
data_path: str = "yahma/alpaca-cleaned", |
|
|
158 |
output_dir: str = "./lora-cxr", |
|
|
159 |
# training hyperparams |
|
|
160 |
batch_size: int = 128, |
|
|
161 |
micro_batch_size: int = 2, |
|
|
162 |
num_epochs: int = 10, |
|
|
163 |
learning_rate: float = 3e-4, |
|
|
164 |
cutoff_len: int = 1024, #256 -> need much more with examples in prompt (1024), 512 for without examples but long IG labels |
|
|
165 |
val_set_size: int = 5, |
|
|
166 |
# lora hyperparams |
|
|
167 |
lora_r: int = 8, |
|
|
168 |
lora_alpha: int = 16, |
|
|
169 |
lora_dropout: float = 0.05, |
|
|
170 |
lora_target_modules: List[str] = [ #default is for llama models |
|
|
171 |
"q_proj", |
|
|
172 |
"v_proj", |
|
|
173 |
], |
|
|
174 |
# llm hyperparams |
|
|
175 |
train_on_inputs: bool = False, # if False, masks out inputs in loss |
|
|
176 |
add_eos_token: bool = False, |
|
|
177 |
group_by_length: bool = False, # faster, but produces an odd training loss curve |
|
|
178 |
# wandb params |
|
|
179 |
wandb_project: str = "lora_training", |
|
|
180 |
wandb_run_name: str = "lora_mimic_cxr", |
|
|
181 |
wandb_entity: str = WANDB_ENTITY, |
|
|
182 |
wandb_watch: str = "", # options: false | gradients | all |
|
|
183 |
wandb_log_model: str = "", # options: false | true |
|
|
184 |
resume_from_checkpoint: str = None, # either training checkpoint or final adapter |
|
|
185 |
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca. |
|
|
186 |
use_embs=False, |
|
|
187 |
use_instruct_data=False |
|
|
188 |
): |
|
|
189 |
if int(os.environ.get("LOCAL_RANK", 0)) == 0: |
|
|
190 |
print( |
|
|
191 |
f"Training Alpaca-LoRA model with params:\n" |
|
|
192 |
f"base_model: {base_model}\n" |
|
|
193 |
f"lora_weights: {lora_weights}\n" |
|
|
194 |
f"data_path: {data_path}\n" |
|
|
195 |
f"output_dir: {output_dir}\n" |
|
|
196 |
f"batch_size: {batch_size}\n" |
|
|
197 |
f"micro_batch_size: {micro_batch_size}\n" |
|
|
198 |
f"num_epochs: {num_epochs}\n" |
|
|
199 |
f"learning_rate: {learning_rate}\n" |
|
|
200 |
f"cutoff_len: {cutoff_len}\n" |
|
|
201 |
f"val_set_size: {val_set_size}\n" |
|
|
202 |
f"lora_r: {lora_r}\n" |
|
|
203 |
f"lora_alpha: {lora_alpha}\n" |
|
|
204 |
f"lora_dropout: {lora_dropout}\n" |
|
|
205 |
f"lora_target_modules: {lora_target_modules}\n" |
|
|
206 |
f"train_on_inputs: {train_on_inputs}\n" |
|
|
207 |
f"add_eos_token: {add_eos_token}\n" |
|
|
208 |
f"group_by_length: {group_by_length}\n" |
|
|
209 |
f"wandb_project: {wandb_project}\n" |
|
|
210 |
f"wandb_run_name: {wandb_run_name}\n" |
|
|
211 |
f"wandb_entity: {wandb_entity}\n" |
|
|
212 |
f"wandb_watch: {wandb_watch}\n" |
|
|
213 |
f"wandb_log_model: {wandb_log_model}\n" |
|
|
214 |
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n" |
|
|
215 |
f"prompt template: {prompt_template_name}\n" |
|
|
216 |
) |
|
|
217 |
assert ( |
|
|
218 |
base_model |
|
|
219 |
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" |
|
|
220 |
gradient_accumulation_steps = batch_size // micro_batch_size |
|
|
221 |
|
|
|
222 |
prompter = Prompter(prompt_template_name) |
|
|
223 |
|
|
|
224 |
device_map = "auto" |
|
|
225 |
world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
|
226 |
ddp = world_size != 1 |
|
|
227 |
if ddp: |
|
|
228 |
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} |
|
|
229 |
gradient_accumulation_steps = gradient_accumulation_steps // world_size |
|
|
230 |
|
|
|
231 |
# Check if parameter passed or if set within environ |
|
|
232 |
use_wandb = len(wandb_project) > 0 or ( |
|
|
233 |
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0 |
|
|
234 |
) |
|
|
235 |
# Only overwrite environ if wandb param passed |
|
|
236 |
if len(wandb_project) > 0: |
|
|
237 |
os.environ["WANDB_PROJECT"] = wandb_project |
|
|
238 |
if len(wandb_watch) > 0: |
|
|
239 |
os.environ["WANDB_WATCH"] = wandb_watch |
|
|
240 |
if len(wandb_log_model) > 0: |
|
|
241 |
os.environ["WANDB_LOG_MODEL"] = wandb_log_model |
|
|
242 |
|
|
|
243 |
|
|
|
244 |
if base_model == 'vicuna_v13': |
|
|
245 |
model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-13b-v1.3", torch_dtype=torch.float16, device_map='auto', load_in_8bit=False) |
|
|
246 |
tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-13b-v1.3", use_fast=False, truncation_side="right", padding_side="right") |
|
|
247 |
else: #7b |
|
|
248 |
model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", torch_dtype=torch.float16, device_map='auto', load_in_8bit=False) |
|
|
249 |
tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3", use_fast=False, truncation_side="right", padding_side="right") |
|
|
250 |
|
|
|
251 |
tokenizer.pad_token = tokenizer.unk_token |
|
|
252 |
|
|
|
253 |
if use_embs: |
|
|
254 |
model.base_model.img_proj_layer = nn.Linear(768, model.base_model.config.hidden_size).to(model.base_model.device) |
|
|
255 |
|
|
|
256 |
# add special token to tokenizer |
|
|
257 |
tokenizer.add_special_tokens({"additional_special_tokens": ["<IMG>"]}) |
|
|
258 |
model.resize_token_embeddings(len(tokenizer)) |
|
|
259 |
|
|
|
260 |
|
|
|
261 |
def tokenize(prompt, add_eos_token=True): |
|
|
262 |
# there's probably a way to do this with the tokenizer settings |
|
|
263 |
# but again, gotta move fast |
|
|
264 |
result = tokenizer( |
|
|
265 |
prompt, |
|
|
266 |
truncation=True, |
|
|
267 |
max_length=cutoff_len, |
|
|
268 |
padding=False, |
|
|
269 |
return_tensors=None, |
|
|
270 |
) |
|
|
271 |
if ( |
|
|
272 |
result["input_ids"][-1] != tokenizer.eos_token_id |
|
|
273 |
and len(result["input_ids"]) < cutoff_len |
|
|
274 |
and add_eos_token |
|
|
275 |
): |
|
|
276 |
result["input_ids"].append(tokenizer.eos_token_id) |
|
|
277 |
result["attention_mask"].append(1) |
|
|
278 |
|
|
|
279 |
result["labels"] = result["input_ids"].copy() |
|
|
280 |
|
|
|
281 |
return result |
|
|
282 |
|
|
|
283 |
def generate_and_tokenize_prompt(data_point): |
|
|
284 |
full_prompt = prompter.generate_prompt( |
|
|
285 |
data_point["instruction"], |
|
|
286 |
data_point["input"], |
|
|
287 |
data_point["output"], |
|
|
288 |
) |
|
|
289 |
tokenized_full_prompt = tokenize(full_prompt) |
|
|
290 |
if not train_on_inputs: |
|
|
291 |
user_prompt = prompter.generate_prompt( |
|
|
292 |
data_point["instruction"], data_point["input"] |
|
|
293 |
) |
|
|
294 |
tokenized_user_prompt = tokenize( |
|
|
295 |
user_prompt, add_eos_token=add_eos_token |
|
|
296 |
) |
|
|
297 |
user_prompt_len = len(tokenized_user_prompt["input_ids"]) |
|
|
298 |
|
|
|
299 |
if add_eos_token: |
|
|
300 |
user_prompt_len -= 1 |
|
|
301 |
|
|
|
302 |
tokenized_full_prompt["labels"] = [ |
|
|
303 |
-100 |
|
|
304 |
] * user_prompt_len + tokenized_full_prompt["labels"][ |
|
|
305 |
user_prompt_len: |
|
|
306 |
] # could be sped up, probably |
|
|
307 |
return tokenized_full_prompt |
|
|
308 |
|
|
|
309 |
model = prepare_model_for_int8_training(model) |
|
|
310 |
|
|
|
311 |
config = LoraConfig( |
|
|
312 |
r=lora_r, |
|
|
313 |
lora_alpha=lora_alpha, |
|
|
314 |
target_modules=lora_target_modules, |
|
|
315 |
lora_dropout=lora_dropout, |
|
|
316 |
bias="none", |
|
|
317 |
task_type="CAUSAL_LM", |
|
|
318 |
) |
|
|
319 |
|
|
|
320 |
model = get_peft_model(model, config) #this sets requires_grad for all params to False |
|
|
321 |
# unfreeze the img_proj_layer |
|
|
322 |
model.model.base_model.img_proj_layer.weight.requires_grad = True |
|
|
323 |
model.model.base_model.img_proj_layer.bias.requires_grad = True |
|
|
324 |
|
|
|
325 |
print("Loading data from ", data_path) |
|
|
326 |
if data_path.endswith(".json") or data_path.endswith(".jsonl"): |
|
|
327 |
data = load_dataset("json", data_files=data_path) |
|
|
328 |
else: |
|
|
329 |
data = load_dataset(data_path) |
|
|
330 |
|
|
|
331 |
if resume_from_checkpoint: |
|
|
332 |
# Check the available weights and load them |
|
|
333 |
checkpoint_name = os.path.join( |
|
|
334 |
resume_from_checkpoint, "pytorch_model.bin" |
|
|
335 |
) # Full checkpoint |
|
|
336 |
if not os.path.exists(checkpoint_name): |
|
|
337 |
checkpoint_name = os.path.join( |
|
|
338 |
resume_from_checkpoint, "adapter_model.bin" |
|
|
339 |
) # only LoRA model - LoRA config above has to fit |
|
|
340 |
resume_from_checkpoint = ( |
|
|
341 |
False # So the trainer won't try loading its state |
|
|
342 |
) |
|
|
343 |
# The two files above have a different name depending on how they were saved, but are actually the same. |
|
|
344 |
if os.path.exists(checkpoint_name): |
|
|
345 |
print(f"Restarting from {checkpoint_name}") |
|
|
346 |
adapters_weights = torch.load(checkpoint_name) |
|
|
347 |
set_peft_model_state_dict(model, adapters_weights) |
|
|
348 |
else: |
|
|
349 |
print(f"Checkpoint {checkpoint_name} not found") |
|
|
350 |
|
|
|
351 |
model.print_trainable_parameters() # Be more transparent about the % of trainable params. |
|
|
352 |
|
|
|
353 |
if val_set_size > 0: |
|
|
354 |
train_val = data["train"].train_test_split( |
|
|
355 |
test_size=val_set_size, shuffle=True, seed=42 |
|
|
356 |
) |
|
|
357 |
train_data = ( |
|
|
358 |
train_val["train"].shuffle().map(generate_and_tokenize_prompt) |
|
|
359 |
) |
|
|
360 |
val_data = ( |
|
|
361 |
train_val["test"].shuffle().map(generate_and_tokenize_prompt) |
|
|
362 |
) |
|
|
363 |
else: |
|
|
364 |
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) |
|
|
365 |
val_data = None |
|
|
366 |
|
|
|
367 |
if use_instruct_data: |
|
|
368 |
report_indices = [i for i, item in enumerate(train_data) if item['is_report']][:5] |
|
|
369 |
instruct_indices = [i for i, item in enumerate(train_data) if not item['is_report']][:5] |
|
|
370 |
|
|
|
371 |
if not ddp and torch.cuda.device_count() > 1: |
|
|
372 |
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available |
|
|
373 |
model.is_parallelizable = True |
|
|
374 |
model.model_parallel = True |
|
|
375 |
|
|
|
376 |
wandb.init( |
|
|
377 |
project=wandb_project, |
|
|
378 |
entity=wandb_entity, |
|
|
379 |
name=wandb_run_name |
|
|
380 |
) |
|
|
381 |
|
|
|
382 |
if use_instruct_data: |
|
|
383 |
trainer = InstructTrainer( |
|
|
384 |
model=model, |
|
|
385 |
train_dataset=train_data, |
|
|
386 |
eval_dataset=val_data, |
|
|
387 |
rep_idxs = report_indices, |
|
|
388 |
inst_idxs = instruct_indices, |
|
|
389 |
args=transformers.TrainingArguments( |
|
|
390 |
per_device_train_batch_size=micro_batch_size, |
|
|
391 |
gradient_accumulation_steps=gradient_accumulation_steps, |
|
|
392 |
warmup_steps=100, |
|
|
393 |
num_train_epochs=num_epochs, |
|
|
394 |
learning_rate=learning_rate, |
|
|
395 |
fp16=True, |
|
|
396 |
logging_steps=10, |
|
|
397 |
optim="adamw_torch", |
|
|
398 |
evaluation_strategy="steps" if val_set_size > 0 else "no", |
|
|
399 |
save_strategy="steps", |
|
|
400 |
eval_steps=200 if val_set_size > 0 else None, |
|
|
401 |
save_steps=200, |
|
|
402 |
output_dir=output_dir, |
|
|
403 |
save_total_limit=None, |
|
|
404 |
load_best_model_at_end=True if val_set_size > 0 else False, |
|
|
405 |
ddp_find_unused_parameters=False if ddp else None, |
|
|
406 |
group_by_length=group_by_length, |
|
|
407 |
report_to="wandb" if use_wandb else None, |
|
|
408 |
run_name=wandb_run_name if use_wandb else None, |
|
|
409 |
max_steps=-1, |
|
|
410 |
dataloader_num_workers=8, |
|
|
411 |
remove_unused_columns=False if use_embs else True, |
|
|
412 |
), |
|
|
413 |
data_collator=MyDataCollatorForSeq2Seq( |
|
|
414 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
|
415 |
) if use_embs else |
|
|
416 |
transformers.DataCollatorForSeq2Seq( |
|
|
417 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
|
418 |
), |
|
|
419 |
) |
|
|
420 |
else: |
|
|
421 |
trainer = ImgTrainer( |
|
|
422 |
model=model, |
|
|
423 |
train_dataset=train_data, |
|
|
424 |
eval_dataset=val_data, |
|
|
425 |
args=transformers.TrainingArguments( |
|
|
426 |
per_device_train_batch_size=micro_batch_size, |
|
|
427 |
gradient_accumulation_steps=gradient_accumulation_steps, |
|
|
428 |
warmup_steps=100, |
|
|
429 |
num_train_epochs=num_epochs, |
|
|
430 |
learning_rate=learning_rate, |
|
|
431 |
fp16=True, |
|
|
432 |
logging_steps=10, |
|
|
433 |
optim="adamw_torch", |
|
|
434 |
evaluation_strategy="steps" if val_set_size > 0 else "no", |
|
|
435 |
save_strategy="steps", |
|
|
436 |
eval_steps=400 if val_set_size > 0 else None, |
|
|
437 |
save_steps=400, |
|
|
438 |
output_dir=output_dir, |
|
|
439 |
save_total_limit=None, |
|
|
440 |
load_best_model_at_end=True if val_set_size > 0 else False, |
|
|
441 |
ddp_find_unused_parameters=False if ddp else None, |
|
|
442 |
group_by_length=group_by_length, |
|
|
443 |
report_to="wandb" if use_wandb else None, |
|
|
444 |
run_name=wandb_run_name if use_wandb else None, |
|
|
445 |
max_steps=-1, |
|
|
446 |
dataloader_num_workers=8, |
|
|
447 |
remove_unused_columns=False if use_embs else True |
|
|
448 |
), |
|
|
449 |
data_collator=MyDataCollatorForSeq2Seq( |
|
|
450 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
|
451 |
) if use_embs else |
|
|
452 |
transformers.DataCollatorForSeq2Seq( |
|
|
453 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
|
454 |
), |
|
|
455 |
) |
|
|
456 |
model.config.use_cache = False |
|
|
457 |
|
|
|
458 |
old_state_dict = model.state_dict |
|
|
459 |
model.state_dict = ( |
|
|
460 |
lambda self, *_, **__: get_peft_model_state_dict( |
|
|
461 |
self, old_state_dict() |
|
|
462 |
) |
|
|
463 |
).__get__(model, type(model)) |
|
|
464 |
|
|
|
465 |
if torch.__version__ >= "2" and sys.platform != "win32": |
|
|
466 |
model = torch.compile(model) |
|
|
467 |
|
|
|
468 |
trainer.train(resume_from_checkpoint=resume_from_checkpoint) |
|
|
469 |
|
|
|
470 |
save_pretrained(model, output_dir) |
|
|
471 |
|
|
|
472 |
print( |
|
|
473 |
"\n If there's a warning about missing keys above, please disregard :)" |
|
|
474 |
) |
|
|
475 |
|
|
|
476 |
|
|
|
477 |
if __name__ == "__main__": |
|
|
478 |
fire.Fire(train) |