[4abb48]: / docs / index.html

Download this file

265 lines (235 with data), 16.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<!DOCTYPE html>
<!-- adapted from https://github.com/eliahuhorwitz/Academic-project-page-template -->
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance">
<meta property="og:title" content="RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance"/>
<meta property="og:description" content="Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems."/>
<meta property="og:url" content="https://chantalmp.github.io/RaDialog/"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/images/example.png" />
<meta property="og:image:width" content="1462"/>
<meta property="og:image:height" content="1269"/>
<meta name="twitter:title" content="RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance">
<meta name="twitter:description" content="Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems.">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/example.png">
<!-- <meta name="twitter:card" content="summary_large_image"> -->
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="Radiology AI, Chatbot, Large Language Model, Vison-Language Model, ChatGPT, GPT4-Vision, Medical Image Analysis, AI in Healthcare, Clinical Report Generation, Radiology Report Automation, AI-Powered Diagnosis, Conversational AI in Medicine, Medical Imaging Technology, AI Radiology Assistant, Healthcare Technology Innovation, Interactive Radiology Reports, Medical Data Analysis AI, Diagnostic AI Tools, Machine Learning in Radiology">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance</title>
<link rel="icon" type="image/x-icon" href="static/images/favicon.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://www.cs.cit.tum.de/camp/members/chantal-pellegrini/" target="_blank">Chantal Pellegrini</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://www.cs.cit.tum.de/camp/members/ege-oezsoy/" target="_blank">Ege Özsoy</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://www.cs.cit.tum.de/camp/members/benjamin-busam-1/" target="_blank">Benjamin Busam</a>,
</span>
<span class="author-block">
<a href="https://www.cs.cit.tum.de/camp/members/cv-nassir-navab/nassir-navab/" target="_blank">Nassir Navab</a>,
</span>
<span class="author-block">
<a href="https://www.cs.cit.tum.de/camp/members/matthias-keicher/" target="_blank">Matthias Keicher</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Computer Aided Medical Procedures, </br>Technical University of Munich</span>
<span class="eql-cntrb"><small><br><sup>*</sup>Indicates equal contribution.</small></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2311.18681.pdf" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Supplementary PDF link -->
<!-- <span class="link-block">
<a href="static/pdfs/supplementary_material.pdf" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Supplementary</span>
</a>
</span> -->
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/ChantalMP/RaDialog" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2311.18681" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video-->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%">
<!-- Your video here -->
<source src="static/videos/RaDialog_demo.mp4"
type="video/mp4">
</video>
<!-- <h2 class="subtitle has-text-centered">
RaDialog generates the finding section for a given chest X-ray image and allows for interactive dialog.
</h2> -->
</div>
</div>
</section>
<!-- End teaser video -->
<!-- Paper abstract -->
<section class="section hero is-light">
<!-- <section class="section hero"> -->
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<section class="section hero">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-full">
<h2 class="title is-3">Methodology</h2>
<img src="static/images/model.png"> </img>
<div class="content has-text-justified">
RaDialog integrates both image features and structured pathology labels for clinically correct report generation, along with the integration of image information with a large language model to enable conversational downstream tasks. Additionally, the LLM is adapted using parameter-efficient fine-tuning for teaching image understanding and radiological knowledge. RaDialog has achieved state-of-the-art results in the clinical correctness of report generation.
</div>
<div class="methodology-image">
</div>
</div>
</div>
</div>
</section>
<section class="section hero">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-full">
<h2 class="title is-3">RaDialog Instruct Dataset</h2>
<img src="static/images/dataset.png"> </img>
<div class="content has-text-justified">
Regarding the RaDialog Instruct Dataset, it includes a proposal for a diverse instruct dataset that maintains the general capacities of LLMs while imparting radiology-specific knowledge and style. This dataset encompasses a variety of tasks ranging from report generation to report correction and question answering. It is uniquely constructed using a combination of existing datasets and LLM-generated pseudo-ground truth answers. Importantly, training with this instruct dataset has significantly enhanced RaDialog's performance in interactive downstream tasks.
</div>
<div class="methodology-image">
</div>
</div>
</div>
</div>
</section>
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@misc{pellegrini2023radialog,
title={RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance},
author={Chantal Pellegrini and Ege Özsoy and Benjamin Busam and Nassir Navab and Matthias Keicher},
year={2023},
eprint={2311.18681},
archivePrefix={arXiv},
primaryClass={cs.CV}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content has-text-centered is-vcentered">
<a class="icon-link" href="https://arxiv.org/pdf/2311.18681.pdf">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
</a>
<a class="icon-link" href="https://github.com/ChantalMP/RaDialog" disabled="">
<span class="icon">
<i class="fab fa-github"></i>
</span>
</a>
<!-- <a class="icon-link" href="https://arxiv.org/abs/2311.18681" disabled="">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
</a> -->
</div>
<div class="content">
<p style="font-size: 9pt; text-align: center">
The authors gratefully acknowledge the financial support by the Federal Ministry of Education and Research of Germany (BMBF) under project DIVA (13GW0469C) and the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) under project ThoraXAI (DIK-2302-0002).
</br></br>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
</br>
This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>