|
a |
|
b/chexbert/src/run_bert.py |
|
|
1 |
import os |
|
|
2 |
import argparse |
|
|
3 |
import time |
|
|
4 |
import torch |
|
|
5 |
import torch.nn as nn |
|
|
6 |
import numpy as np |
|
|
7 |
import pandas as pd |
|
|
8 |
import utils |
|
|
9 |
from models.bert_labeler import bert_labeler |
|
|
10 |
from datasets.impressions_dataset import ImpressionsDataset |
|
|
11 |
from constants import * |
|
|
12 |
|
|
|
13 |
def collate_fn_labels(sample_list): |
|
|
14 |
"""Custom collate function to pad reports in each batch to the max len |
|
|
15 |
@param sample_list (List): A list of samples. Each sample is a dictionary with |
|
|
16 |
keys 'imp', 'label', 'len' as returned by the __getitem__ |
|
|
17 |
function of ImpressionsDataset |
|
|
18 |
|
|
|
19 |
@returns batch (dictionary): A dictionary with keys 'imp', 'label', 'len' but now |
|
|
20 |
'imp' is a tensor with padding and batch size as the |
|
|
21 |
first dimension. 'label' is a stacked tensor of labels |
|
|
22 |
for the whole batch with batch size as first dim. And |
|
|
23 |
'len' is a list of the length of each sequence in batch |
|
|
24 |
""" |
|
|
25 |
tensor_list = [s['imp'] for s in sample_list] |
|
|
26 |
batched_imp = torch.nn.utils.rnn.pad_sequence(tensor_list, |
|
|
27 |
batch_first=True, |
|
|
28 |
padding_value=PAD_IDX) |
|
|
29 |
label_list = [s['label'] for s in sample_list] |
|
|
30 |
batched_label = torch.stack(label_list, dim=0) |
|
|
31 |
len_list = [s['len'] for s in sample_list] |
|
|
32 |
|
|
|
33 |
batch = {'imp': batched_imp, 'label': batched_label, 'len': len_list} |
|
|
34 |
return batch |
|
|
35 |
|
|
|
36 |
def load_data(train_csv_path, train_list_path, dev_csv_path, |
|
|
37 |
dev_list_path, train_weights=None, batch_size=BATCH_SIZE, |
|
|
38 |
shuffle=True, num_workers=NUM_WORKERS): |
|
|
39 |
""" Create ImpressionsDataset objects for train and test data |
|
|
40 |
@param train_csv_path (string): path to training csv file containing labels |
|
|
41 |
@param train_list_path (string): path to list of encoded impressions for train set |
|
|
42 |
@param dev_csv_path (string): same as train_csv_path but for dev set |
|
|
43 |
@param dev_list_path (string): same as train_list_path but for dev set |
|
|
44 |
@param train_weights (torch.Tensor): Tensor of shape (train_set_size) containing weights |
|
|
45 |
for each training example, for the purposes of batch |
|
|
46 |
sampling with replacement |
|
|
47 |
@param batch_size (int): the batch size. As per the BERT repository, the max batch size |
|
|
48 |
that can fit on a TITAN XP is 6 if the max sequence length |
|
|
49 |
is 512, which is our case. We have 3 TITAN XP's |
|
|
50 |
@param shuffle (bool): Whether to shuffle data before each epoch, ignored if train_weights |
|
|
51 |
is not None |
|
|
52 |
@param num_workers (int): How many worker processes to use to load data |
|
|
53 |
|
|
|
54 |
@returns dataloaders (tuple): tuple of two ImpressionsDataset objects, for train and dev sets |
|
|
55 |
""" |
|
|
56 |
collate_fn = collate_fn_labels |
|
|
57 |
train_dset = ImpressionsDataset(train_csv_path, train_list_path) |
|
|
58 |
dev_dset = ImpressionsDataset(dev_csv_path, dev_list_path) |
|
|
59 |
|
|
|
60 |
if train_weights is None: |
|
|
61 |
train_loader = torch.utils.data.DataLoader(train_dset, batch_size=batch_size, shuffle=shuffle, |
|
|
62 |
num_workers=num_workers, collate_fn=collate_fn) |
|
|
63 |
else: |
|
|
64 |
sampler = torch.utils.data.WeightedRandomSampler(weights=train_weights, |
|
|
65 |
num_samples=len(train_weights), |
|
|
66 |
replacement=True) |
|
|
67 |
train_loader = torch.utils.data.DataLoader(train_dset, |
|
|
68 |
batch_size=batch_size, |
|
|
69 |
num_workers=num_workers, |
|
|
70 |
collate_fn=collate_fn, |
|
|
71 |
sampler=sampler) |
|
|
72 |
|
|
|
73 |
dev_loader = torch.utils.data.DataLoader(dev_dset, batch_size=batch_size, shuffle=shuffle, |
|
|
74 |
num_workers=num_workers, collate_fn=collate_fn) |
|
|
75 |
dataloaders = (train_loader, dev_loader) |
|
|
76 |
return dataloaders |
|
|
77 |
|
|
|
78 |
def load_test_data(test_csv_path, test_list_path, batch_size=BATCH_SIZE, |
|
|
79 |
num_workers=NUM_WORKERS, shuffle=False): |
|
|
80 |
""" Create ImpressionsDataset object for the test set |
|
|
81 |
@param test_csv_path (string): path to test csv file containing labels |
|
|
82 |
@param test_list_path (string): path to list of encoded impressions |
|
|
83 |
@param batch_size (int): the batch size. As per the BERT repository, the max batch size |
|
|
84 |
that can fit on a TITAN XP is 6 if the max sequence length |
|
|
85 |
is 512, which is our case. We have 3 TITAN XP's |
|
|
86 |
@param num_workers (int): how many worker processes to use to load data |
|
|
87 |
@param shuffle (bool): whether to shuffle the data or not |
|
|
88 |
|
|
|
89 |
@returns test_loader (dataloader): dataloader object for test set |
|
|
90 |
""" |
|
|
91 |
collate_fn = collate_fn_labels |
|
|
92 |
test_dset = ImpressionsDataset(test_csv_path, test_list_path) |
|
|
93 |
test_loader = torch.utils.data.DataLoader(test_dset, batch_size=batch_size, shuffle=shuffle, |
|
|
94 |
num_workers=num_workers, collate_fn=collate_fn) |
|
|
95 |
return test_loader |
|
|
96 |
|
|
|
97 |
def train(save_path, dataloaders, f1_weights, model=None, device=None, |
|
|
98 |
optimizer=None, lr=LEARNING_RATE, log_every=LOG_EVERY, |
|
|
99 |
valid_niter=VALID_NITER, best_metric=0.0): |
|
|
100 |
""" Main training loop for the labeler |
|
|
101 |
@param save_path (string): Directory in which model weights are stored |
|
|
102 |
@param model (nn.Module): the labeler model to train, if applicable |
|
|
103 |
@param device (torch.device): device for the model. If model is not None, this |
|
|
104 |
parameter is required |
|
|
105 |
@param dataloaders (tuple): tuple of dataloader objects as returned by load_data |
|
|
106 |
@param f1_weights (dictionary): maps conditions to weights for blank, negation, |
|
|
107 |
uncertain and positxive f1 task averaging |
|
|
108 |
@param optimizer (torch.optim.Optimizer): the optimizer to use, if applicable |
|
|
109 |
@param lr (float): learning rate to use in the optimizer, ignored if optimizer |
|
|
110 |
is not None |
|
|
111 |
@param log_every (int): number of iterations to log after |
|
|
112 |
@param valid_niter (int): number of iterations after which to evaluate the model and |
|
|
113 |
save it if it is better than old best model |
|
|
114 |
@param best_metric (float): save checkpoints only if dev set performance is higher |
|
|
115 |
than best_metric |
|
|
116 |
""" |
|
|
117 |
if model and not device: |
|
|
118 |
print("train function error: Model specified but not device") |
|
|
119 |
return |
|
|
120 |
|
|
|
121 |
if model is None: |
|
|
122 |
model = bert_labeler(pretrain_path=PRETRAIN_PATH) |
|
|
123 |
model.train() #put the model into train mode |
|
|
124 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
125 |
if torch.cuda.device_count() > 1: |
|
|
126 |
print("Using", torch.cuda.device_count(), "GPUs!") |
|
|
127 |
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's |
|
|
128 |
model = model.to(device) |
|
|
129 |
else: |
|
|
130 |
model.train() |
|
|
131 |
|
|
|
132 |
if optimizer is None: |
|
|
133 |
optimizer = torch.optim.Adam(model.parameters(), lr=lr) |
|
|
134 |
|
|
|
135 |
begin_time = time.time() |
|
|
136 |
report_examples = 0 |
|
|
137 |
report_loss = 0.0 |
|
|
138 |
train_ld = dataloaders[0] |
|
|
139 |
dev_ld = dataloaders[1] |
|
|
140 |
loss_func = nn.CrossEntropyLoss(reduction='sum') |
|
|
141 |
|
|
|
142 |
print('begin labeler training') |
|
|
143 |
for epoch in range(NUM_EPOCHS): |
|
|
144 |
for i, data in enumerate(train_ld, 0): |
|
|
145 |
batch = data['imp'] #(batch_size, max_len) |
|
|
146 |
batch = batch.to(device) |
|
|
147 |
label = data['label'] #(batch_size, 14) |
|
|
148 |
label = label.permute(1, 0).to(device) |
|
|
149 |
src_len = data['len'] |
|
|
150 |
batch_size = batch.shape[0] |
|
|
151 |
attn_mask = utils.generate_attention_masks(batch, src_len, device) |
|
|
152 |
|
|
|
153 |
optimizer.zero_grad() |
|
|
154 |
out = model(batch, attn_mask) #list of 14 tensors |
|
|
155 |
|
|
|
156 |
batch_loss = 0.0 |
|
|
157 |
for j in range(len(out)): |
|
|
158 |
batch_loss += loss_func(out[j], label[j]) |
|
|
159 |
|
|
|
160 |
report_loss += batch_loss |
|
|
161 |
report_examples += batch_size |
|
|
162 |
loss = batch_loss / batch_size |
|
|
163 |
loss.backward() |
|
|
164 |
optimizer.step() |
|
|
165 |
|
|
|
166 |
if (i+1) % log_every == 0: |
|
|
167 |
print('epoch %d, iter %d, avg_loss %.3f, time_elapsed %.3f sec' % (epoch+1, i+1, report_loss/report_examples, |
|
|
168 |
time.time() - begin_time)) |
|
|
169 |
report_loss = 0.0 |
|
|
170 |
report_examples = 0 |
|
|
171 |
|
|
|
172 |
if (i+1) % valid_niter == 0: |
|
|
173 |
print('\n begin validation') |
|
|
174 |
metrics = utils.evaluate(model, dev_ld, device, f1_weights) |
|
|
175 |
weighted = metrics['weighted'] |
|
|
176 |
kappas = metrics['kappa'] |
|
|
177 |
|
|
|
178 |
for j in range(len(CONDITIONS)): |
|
|
179 |
print('%s kappa: %.3f' % (CONDITIONS[j], kappas[j])) |
|
|
180 |
print('average: %.3f' % (np.mean(kappas))) |
|
|
181 |
|
|
|
182 |
#for j in range(len(CONDITIONS)): |
|
|
183 |
# print('%s weighted_f1: %.3f' % (CONDITIONS[j], weighted[j])) |
|
|
184 |
#print('average of weighted_f1: %.3f' % (np.mean(weighted))) |
|
|
185 |
|
|
|
186 |
for j in range(len(CONDITIONS)): |
|
|
187 |
print('%s blank_f1: %.3f, negation_f1: %.3f, uncertain_f1: %.3f, positive: %.3f' % (CONDITIONS[j], |
|
|
188 |
metrics['blank'][j], |
|
|
189 |
metrics['negation'][j], |
|
|
190 |
metrics['uncertain'][j], |
|
|
191 |
metrics['positive'][j])) |
|
|
192 |
|
|
|
193 |
metric_avg = np.mean(kappas) |
|
|
194 |
if metric_avg > best_metric: #new best network |
|
|
195 |
print("saving new best network!\n") |
|
|
196 |
best_metric = metric_avg |
|
|
197 |
path = os.path.join(save_path, "model_epoch%d_iter%d" % (epoch+1, i+1)) |
|
|
198 |
torch.save({'epoch': epoch+1, |
|
|
199 |
'model_state_dict': model.state_dict(), |
|
|
200 |
'optimizer_state_dict': optimizer.state_dict()}, |
|
|
201 |
path) |
|
|
202 |
|
|
|
203 |
def model_from_ckpt(model, ckpt_path): |
|
|
204 |
"""Load up model checkpoint |
|
|
205 |
@param model (nn.Module): the module to be loaded |
|
|
206 |
@param ckpt_path (string): path to a checkpoint. If this is None, then |
|
|
207 |
model is trained from scratch |
|
|
208 |
|
|
|
209 |
@return (tuple): tuple containing the model, optimizer and device |
|
|
210 |
""" |
|
|
211 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
212 |
if torch.cuda.device_count() > 1: |
|
|
213 |
print("Using", torch.cuda.device_count(), "GPUs!") |
|
|
214 |
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's |
|
|
215 |
model = model.to(device) |
|
|
216 |
optimizer = torch.optim.Adam(model.parameters()) |
|
|
217 |
|
|
|
218 |
checkpoint = torch.load(ckpt_path) |
|
|
219 |
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
220 |
optimizer.load_state_dict(checkpoint['optimizer_state_dict']) |
|
|
221 |
|
|
|
222 |
return (model, optimizer, device) |
|
|
223 |
|
|
|
224 |
if __name__ == '__main__': |
|
|
225 |
parser = argparse.ArgumentParser(description='Train BERT-base model on task of labeling 14 medical conditions.') |
|
|
226 |
parser.add_argument('--train_csv', type=str, nargs='?', required=True, |
|
|
227 |
help='path to csv containing train reports.') |
|
|
228 |
parser.add_argument('--dev_csv', type=str, nargs='?', required=True, |
|
|
229 |
help='path to csv containing dev reports.') |
|
|
230 |
parser.add_argument('--train_imp_list', type=str, nargs='?', required=True, |
|
|
231 |
help='path to list of tokenized train set report impressions') |
|
|
232 |
parser.add_argument('--dev_imp_list', type=str, nargs='?', required=True, |
|
|
233 |
help='path to list of tokenized dev set report impressions') |
|
|
234 |
parser.add_argument('--output_dir', type=str, nargs='?', required=True, |
|
|
235 |
help='path to output directory where checkpoints will be saved') |
|
|
236 |
parser.add_argument('--checkpoint', type=str, nargs='?', required=False, |
|
|
237 |
help='path to existing checkpoint to initialize weights from') |
|
|
238 |
args = parser.parse_args() |
|
|
239 |
train_csv_path = args.train_csv |
|
|
240 |
dev_csv_path = args.dev_csv |
|
|
241 |
train_imp_path = args.train_imp_list |
|
|
242 |
dev_imp_path = args.dev_imp_list |
|
|
243 |
out_path = args.output_dir |
|
|
244 |
checkpoint_path = args.checkpoint |
|
|
245 |
|
|
|
246 |
if checkpoint_path: |
|
|
247 |
model, optimizer, device = model_from_ckpt(bert_labeler(), checkpoint_path) |
|
|
248 |
else: |
|
|
249 |
model, optimizer, device = None, None, None |
|
|
250 |
f1_weights = utils.get_weighted_f1_weights(dev_csv_path) |
|
|
251 |
dataloaders = load_data(train_csv_path, train_imp_path, dev_csv_path, dev_imp_path) |
|
|
252 |
train(save_path=out_path, |
|
|
253 |
dataloaders=dataloaders, |
|
|
254 |
model=model, |
|
|
255 |
optimizer=optimizer, |
|
|
256 |
device=device, |
|
|
257 |
f1_weights=f1_weights) |
|
|
258 |
|