import os
import re
import argparse
import numpy as np
import random
import monai
import time
# from networks import build_net
import logging
import os
import sys
import tempfile
from glob import glob
from ignite.metrics import Accuracy
import nibabel as nib
import torch
import argparse
from monai.data import CacheDataset, DataLoader, Dataset
import SimpleITK as sitk
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.data import NiftiSaver, create_test_image_3d, list_data_collate
from collections import OrderedDict
from monai.handlers import (MeanDice, StatsHandler, ValidationHandler, CheckpointSaver, LrScheduleHandler, CheckpointLoader,
SegmentationSaver, TensorBoardImageHandler, TensorBoardStatsHandler)
from monai.inferers import SimpleInferer, SlidingWindowInferer
from monai.utils import set_determinism
import re
from monai.data import create_test_image_3d, list_data_collate
from monai.inferers import sliding_window_inference
from monai.transforms import (Activationsd,MeanEnsembled, GaussianSmoothd, CropForegroundd, ThresholdIntensityd, Activations,AsDiscrete, LoadImaged, AsChannelFirstd, VoteEnsembled, AsDiscreted, Compose, AddChanneld, Transpose, ConcatItemsd,
ScaleIntensityd, Resized,ToTensord, RandSpatialCropd, Rand3DElasticd, RandAffined, RandGaussianSmoothd, SpatialPadd,
Spacingd, Orientationd, RandShiftIntensityd, BorderPadd, RandGaussianNoised, RandAdjustContrastd,NormalizeIntensityd,RandFlipd, KeepLargestConnectedComponent)
from monai.engines import (
EnsembleEvaluator,
SupervisedEvaluator,
SupervisedTrainer
)
from skimage.measure import label
def getLargestCC(segmentation):
labels = label(segmentation)
unique, counts = np.unique(labels, return_counts=True)
list_seg=list(zip(unique, counts))[1:] # the 0 label is by default background so take the rest
largest=max(list_seg, key=lambda x:x[1])[0]
labels_max=(labels == largest).astype(int)
return labels_max
def Padding(image, reference):
size_new = reference.GetSize()
output_size = tuple(size_new)
resampler = sitk.ResampleImageFilter()
resampler.SetOutputSpacing(reference.GetSpacing())
resampler.SetSize(output_size)
# resample on label
resampler.SetInterpolator(sitk.sitkNearestNeighbor)
resampler.SetOutputOrigin(reference.GetOrigin())
resampler.SetOutputDirection(reference.GetDirection())
image = resampler.Execute(image)
return image
def resize(img, new_size, interpolator):
# img = sitk.ReadImage(img)
dimension = img.GetDimension()
# Physical image size corresponds to the largest physical size in the training set, or any other arbitrary size.
reference_physical_size = np.zeros(dimension)
reference_physical_size[:] = [(sz - 1) * spc if sz * spc > mx else mx for sz, spc, mx in
zip(img.GetSize(), img.GetSpacing(), reference_physical_size)]
# Create the reference image with a zero origin, identity direction cosine matrix and dimension
reference_origin = np.zeros(dimension)
reference_direction = np.identity(dimension).flatten()
reference_size = new_size
reference_spacing = [phys_sz / (sz - 1) for sz, phys_sz in zip(reference_size, reference_physical_size)]
reference_image = sitk.Image(reference_size, img.GetPixelIDValue())
reference_image.SetOrigin(reference_origin)
reference_image.SetSpacing(reference_spacing)
reference_image.SetDirection(reference_direction)
# Always use the TransformContinuousIndexToPhysicalPoint to compute an indexed point's physical coordinates as
# this takes into account size, spacing and direction cosines. For the vast majority of images the direction
# cosines are the identity matrix, but when this isn't the case simply multiplying the central index by the
# spacing will not yield the correct coordinates resulting in a long debugging session.
reference_center = np.array(
reference_image.TransformContinuousIndexToPhysicalPoint(np.array(reference_image.GetSize()) / 2.0))
# Transform which maps from the reference_image to the current img with the translation mapping the image
# origins to each other.
transform = sitk.AffineTransform(dimension)
transform.SetMatrix(img.GetDirection())
transform.SetTranslation(np.array(img.GetOrigin()) - reference_origin)
# Modify the transformation to align the centers of the original and reference image instead of their origins.
centering_transform = sitk.TranslationTransform(dimension)
img_center = np.array(img.TransformContinuousIndexToPhysicalPoint(np.array(img.GetSize()) / 2.0))
centering_transform.SetOffset(np.array(transform.GetInverse().TransformPoint(img_center) - reference_center))
# centered_transform = sitk.Transform(transform)
# centered_transform.AddTransform(centering_transform)
centered_transform = sitk.CompositeTransform([transform, centering_transform])
# Using the linear interpolator as these are intensity images, if there is a need to resample a ground truth
# segmentation then the segmentation image should be resampled using the NearestNeighbor interpolator so that
# no new labels are introduced.
return sitk.Resample(img, reference_image, centered_transform, interpolator, 0.0)
def resample_sitk_image(sitk_image, spacing=None, interpolator=None, fill_value=0):
# https://github.com/SimpleITK/SlicerSimpleFilters/blob/master/SimpleFilters/SimpleFilters.py
_SITK_INTERPOLATOR_DICT = {
'nearest': sitk.sitkNearestNeighbor,
'linear': sitk.sitkLinear,
'gaussian': sitk.sitkGaussian,
'label_gaussian': sitk.sitkLabelGaussian,
'bspline': sitk.sitkBSpline,
'hamming_sinc': sitk.sitkHammingWindowedSinc,
'cosine_windowed_sinc': sitk.sitkCosineWindowedSinc,
'welch_windowed_sinc': sitk.sitkWelchWindowedSinc,
'lanczos_windowed_sinc': sitk.sitkLanczosWindowedSinc
}
if isinstance(sitk_image, str):
sitk_image = sitk.ReadImage(sitk_image)
num_dim = sitk_image.GetDimension()
if not interpolator:
interpolator = 'linear'
pixelid = sitk_image.GetPixelIDValue()
if pixelid not in [1, 2, 4]:
raise NotImplementedError(
'Set `interpolator` manually, '
'can only infer for 8-bit unsigned or 16, 32-bit signed integers')
if pixelid == 1: # 8-bit unsigned int
interpolator = 'nearest'
orig_pixelid = sitk_image.GetPixelIDValue()
orig_origin = sitk_image.GetOrigin()
orig_direction = sitk_image.GetDirection()
orig_spacing = np.array(sitk_image.GetSpacing())
orig_size = np.array(sitk_image.GetSize(), dtype=np.int)
if not spacing:
min_spacing = orig_spacing.min()
new_spacing = [min_spacing] * num_dim
else:
new_spacing = [float(s) for s in spacing]
assert interpolator in _SITK_INTERPOLATOR_DICT.keys(), \
'`interpolator` should be one of {}'.format(_SITK_INTERPOLATOR_DICT.keys())
sitk_interpolator = _SITK_INTERPOLATOR_DICT[interpolator]
new_size = orig_size * (orig_spacing / new_spacing)
new_size = np.ceil(new_size).astype(np.int) # Image dimensions are in integers
new_size = [int(s) for s in new_size] # SimpleITK expects lists, not ndarrays
resample_filter = sitk.ResampleImageFilter()
resample_filter.SetOutputSpacing(new_spacing)
resample_filter.SetSize(new_size)
resample_filter.SetOutputDirection(orig_direction)
resample_filter.SetOutputOrigin(orig_origin)
resample_filter.SetTransform(sitk.Transform())
resample_filter.SetDefaultPixelValue(orig_pixelid)
resample_filter.SetInterpolator(sitk_interpolator)
resample_filter.SetDefaultPixelValue(fill_value)
resampled_sitk_image = resample_filter.Execute(sitk_image)
return resampled_sitk_image
def numericalSort(value):
numbers = re.compile(r'(\d+)')
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
def lstFiles(Path):
images_list = [] # create an empty list, the raw image data files is stored here
for dirName, subdirList, fileList in os.walk(Path):
for filename in fileList:
if ".nii.gz" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".nii" in filename.lower():
images_list.append(os.path.join(dirName, filename))
elif ".mhd" in filename.lower():
images_list.append(os.path.join(dirName, filename))
images_list = sorted(images_list, key=numericalSort)
return images_list
def new_state_dict(file_name):
state_dict = torch.load(file_name)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:6] == 'module':
name = k[7:]
new_state_dict[name] = v
else:
new_state_dict[k] = v
return new_state_dict
def new_state_dict_cpu(file_name):
state_dict = torch.load(file_name, map_location='cpu')
new_state_dict_cpu = OrderedDict()
for k, v in state_dict.items():
if k[:6] == 'module':
name = k[7:]
new_state_dict_cpu[name] = v
else:
new_state_dict_cpu[k] = v
return new_state_dict_cpu
def from_numpy_to_itk(image_np, image_itk):
# read image file
reader = sitk.ImageFileReader()
reader.SetFileName(image_itk)
image_itk = reader.Execute()
image_np = np.transpose(image_np, (2, 1, 0))
image = sitk.GetImageFromArray(image_np)
image.SetDirection(image_itk.GetDirection())
image.SetSpacing(image_itk.GetSpacing())
image.SetOrigin(image_itk.GetOrigin())
return image
# function to keep track of the cropped area and coordinates
def statistics_crop(image, resolution):
files = [{"image": image}]
reader = sitk.ImageFileReader()
reader.SetFileName(image)
image_itk = reader.Execute()
original_resolution = image_itk.GetSpacing()
# original size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
original_shape = vol.shape
# cropped foreground size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image', start_coord_key='foreground_start_coord',
end_coord_key='foreground_end_coord', ), # crop CropForeground
ToTensord(keys=['image', 'foreground_start_coord', 'foreground_end_coord'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, coord1, coord2 = (loader['image'][0], loader['foreground_start_coord'][0], loader['foreground_end_coord'][0])
vol = im[0].numpy()
coord1 = coord1.numpy()
coord2 = coord2.numpy()
crop_shape = vol.shape
if resolution is not None:
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
Spacingd(keys=['image'], pixdim=resolution, mode=('bilinear')), # resolution
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
resampled_size = vol.shape
else:
resampled_size = original_shape
return original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution
def build_net_CT(patch_size,resolution):
from monai.networks.layers import Norm
sizes, spacings = patch_size, resolution
strides, kernels = [], []
while True:
spacing_ratio = [sp / min(spacings) for sp in spacings]
stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)]
kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
if all(s == 1 for s in stride):
break
sizes = [i / j for i, j in zip(sizes, stride)]
spacings = [i * j for i, j in zip(spacings, stride)]
kernels.append(kernel)
strides.append(stride)
strides.insert(0, len(spacings) * [1])
kernels.append(len(spacings) * [3])
# # create Unet
nn_Unet = monai.networks.nets.DynUNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
kernel_size=kernels,
strides=strides,
upsample_kernel_size=strides[1:],
res_block=True,
)
return nn_Unet
def crop_window(prostate_contour):
# Cut data, restricted to the prostate contours + a pitch per direction per dimension.
"""
nrrd has the following format, assuming to watch the patient from the front:
(x, y, z)
x: left to right (ascending)
y: front to back (ascending)
z: bottom to top (ascending)
"""
pitch = 5
pattern = np.where(prostate_contour == 1)
minx = np.min(pattern[0]) - pitch
maxx = np.max(pattern[0]) + pitch
miny = np.min(pattern[1]) - pitch
maxy = np.max(pattern[1]) + pitch
minz = np.min(pattern[2]) - pitch
maxz = np.max(pattern[2]) + pitch
if (maxx - minx) % 2 != 0:
maxx += 1
if (maxy - miny) % 2 != 0:
maxy += 1
if (maxz - minz) % 2 != 0:
maxz += 1
"""
Choose all tensors to have size of 64x64x64
"""
limit = 32
while maxx - minx < limit:
maxx += 1
minx -= 1
while maxy - miny < limit:
maxy += 1
miny -= 1
while maxz - minz < limit:
maxz += 1
minz -= 1
return minx, maxx, miny, maxy, minz, maxz
def uniform_img_dimensions(image, label, nearest):
image_array = sitk.GetArrayFromImage(image)
image_array = np.transpose(image_array, axes=(2, 1, 0)) # reshape array from itk z,y,x to x,y,z
image_shape = image_array.shape
if nearest is True:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='nearest')
res = resize(label,image_shape,sitk.sitkNearestNeighbor)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('uint8'))
# print(res.GetSize())
else:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='linear')
res = resize(label, image_shape, sitk.sitkLinear)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('float'))
res.SetDirection(image.GetDirection())
res.SetOrigin(image.GetOrigin())
res.SetSpacing(image.GetSpacing())
return image, res
def uniform_img_dimensions_internal(image, label, nearest):
name_label = label
image = sitk.ReadImage(image)
label = sitk.ReadImage(label)
image_array = sitk.GetArrayFromImage(image)
image_array = np.transpose(image_array, axes=(2, 1, 0)) # reshape array from itk z,y,x to x,y,z
image_shape = image_array.shape
if nearest is True:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='nearest')
res = resize(label,image_shape,sitk.sitkNearestNeighbor)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('uint8'))
# print(res.GetSize())
else:
label = resample_sitk_image(label, spacing=image.GetSpacing(), interpolator='linear')
res = resize(label, image_shape, sitk.sitkLinear)
res = (np.rint(sitk.GetArrayFromImage(res)))
res = sitk.GetImageFromArray(res.astype('float'))
res.SetDirection(image.GetDirection())
res.SetOrigin(image.GetOrigin())
res.SetSpacing(image.GetSpacing())
sitk.WriteImage(res, name_label)
def normalize_PET(image_itk, value):
# read image file
image_np = sitk.GetArrayFromImage(image_itk)
image_np = image_np/value
image = sitk.GetImageFromArray(image_np)
image.SetDirection(image_itk.GetDirection())
image.SetSpacing(image_itk.GetSpacing())
image.SetOrigin(image_itk.GetOrigin())
return image
def processing_itk(label_CT, image_PET, label_PET, gluteus, new_resolution, patch_size):
gluteus = sitk.ReadImage(gluteus)
label_CT = sitk.ReadImage(label_CT)
image_PET = sitk.ReadImage(image_PET)
if label_PET is not None:
label_PET = sitk.ReadImage(label_PET)
if new_resolution is not None:
image_PET = resample_sitk_image(image_PET, spacing=new_resolution, interpolator='linear')
label_CT = Padding(label_CT, image_PET)
gluteus = Padding(gluteus, image_PET)
image_PET, label_CT = uniform_img_dimensions(image_PET, label_CT, True)
image_PET, gluteus = uniform_img_dimensions(image_PET, gluteus, True)
# new part for Pet tumor_background normalization
gluteos_ROI_array = sitk.GetArrayFromImage(gluteus)
gluteos_ROI_index = np.where(gluteos_ROI_array == 1)
PET_array = sitk.GetArrayFromImage(image_PET)
avg = np.mean(PET_array[gluteos_ROI_index])
image_PET = normalize_PET(image_PET, avg)
# end normalization
if label_PET is not None:
label_PET = Padding(label_PET, image_PET)
image_PET, label_PET = uniform_img_dimensions(image_PET, label_PET, True)
label_CT_array = sitk.GetArrayFromImage(label_CT)
minx, maxx, miny, maxy, minz, maxz = crop_window(label_CT_array)
roiFilter = sitk.RegionOfInterestImageFilter()
roiFilter.SetSize(patch_size)
roiFilter.SetIndex([int(minz), int(miny), int(minx)])
label_CT = roiFilter.Execute(label_CT)
image_PET = roiFilter.Execute(image_PET)
if label_PET is not None:
label_PET = roiFilter.Execute(label_PET)
else:
label_PET = None
sitk.WriteImage(label_CT, 'mask_crop.nii')
sitk.WriteImage(image_PET, 'result.nii')
if label_PET is not None:
sitk.WriteImage(label_PET, 'label_crop.nii')
def gaussian2(image):
resacleFilter = sitk.RescaleIntensityImageFilter()
resacleFilter.SetOutputMaximum(255)
resacleFilter.SetOutputMinimum(0)
image = resacleFilter.Execute(image) # set intensity 0-255
gaussianFilter = sitk.SmoothingRecursiveGaussianImageFilter()
gaussianFilter.SetSigma(3)
image = gaussianFilter.Execute(image)
resacleFilter = sitk.RescaleIntensityImageFilter()
resacleFilter.SetOutputMaximum(1)
resacleFilter.SetOutputMinimum(0)
image = resacleFilter.Execute(image) # set intensity 0-255
thresholdFilter = sitk.BinaryThresholdImageFilter()
thresholdFilter.SetLowerThreshold(0.5)
thresholdFilter.SetUpperThreshold(2)
thresholdFilter.SetInsideValue(1)
thresholdFilter.SetOutsideValue(0)
image = thresholdFilter.Execute(image)
return image