[83198a]: / monai 0.5.0 / deprecated / predict_single_image.py

Download this file

292 lines (212 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
from train import *
import argparse
from networks import *
import SimpleITK as sitk
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.data import NiftiSaver, create_test_image_3d, list_data_collate
from collections import OrderedDict
from organize_folder_structure import resize, resample_sitk_image, uniform_img_dimensions
parser = argparse.ArgumentParser()
parser.add_argument("--image", type=str, default='./Data_folder/images/test/image0.nii')
parser.add_argument("--label", type=str, default='./Data_folder/labels/test/label0.nii')
parser.add_argument("--result", type=str, default='./Data_folder/test.nii', help='path to the .nii result to save')
parser.add_argument("--weights", type=str, default='./best_metric_model.pth', help='network weights to load')
parser.add_argument("--resolution", default=[3,3,3], help='New resolution if you want to resample')
parser.add_argument("--patch_size", type=int, nargs=3, default=(128, 128, 64), help="Input dimension for the generator")
parser.add_argument('--gpu_ids', type=str, default='2,3', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
args = parser.parse_args()
def new_state_dict(file_name):
state_dict = torch.load(file_name)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:6] == 'module':
name = k[7:]
new_state_dict[name] = v
else:
new_state_dict[k] = v
return new_state_dict
def from_numpy_to_itk(image_np, image_itk):
# read image file
reader = sitk.ImageFileReader()
reader.SetFileName(image_itk)
image_itk = reader.Execute()
image_np = np.transpose(image_np, (2, 1, 0))
image = sitk.GetImageFromArray(image_np)
image.SetDirection(image_itk.GetDirection())
image.SetSpacing(image_itk.GetSpacing())
image.SetOrigin(image_itk.GetOrigin())
return image
# function to keep track of the cropped area and coordinates
def statistics_crop(image, resolution):
files = [{"image": image}]
reader = sitk.ImageFileReader()
reader.SetFileName(image)
image_itk = reader.Execute()
original_resolution = image_itk.GetSpacing()
# original size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
original_shape = vol.shape
# cropped foreground size
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image', start_coord_key='foreground_start_coord',
end_coord_key='foreground_end_coord', ), # crop CropForeground
ToTensord(keys=['image', 'foreground_start_coord', 'foreground_end_coord'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, coord1, coord2 = (loader['image'][0], loader['foreground_start_coord'][0], loader['foreground_end_coord'][0])
vol = im[0].numpy()
coord1 = coord1.numpy()
coord2 = coord2.numpy()
crop_shape = vol.shape
if resolution is not None:
transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
Spacingd(keys=['image'], pixdim=resolution, mode=('bilinear')), # resolution
ToTensord(keys=['image'])])
data = monai.data.Dataset(data=files, transform=transforms)
loader = DataLoader(data, batch_size=1, num_workers=0, pin_memory=torch.cuda.is_available())
loader = monai.utils.misc.first(loader)
im, = (loader['image'][0])
vol = im.numpy()
resampled_size = vol.shape
else:
resampled_size = original_shape
return original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution
def segment(image, label, result, weights, resolution, patch_size):
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
if label is not None:
files = [{"image": image, "label": label}]
else:
files = [{"image": image}]
# original size, size after crop_background, cropped roi coordinates, cropped resampled roi size
original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution = statistics_crop(image, resolution)
# -------------------------------
if label is not None:
if resolution is not None:
val_transforms = Compose([
LoadImaged(keys=['image', 'label']),
AddChanneld(keys=['image', 'label']),
CropForegroundd(keys=['image', 'label'], source_key='image'), # crop CropForeground
ThresholdIntensityd(keys=['image'], threshold=-350, above=True, cval=-350), # Threshold CT
ThresholdIntensityd(keys=['image'], threshold=350, above=False, cval=350),
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
Spacingd(keys=['image', 'label'], pixdim=resolution, mode=('bilinear', 'nearest')), # resolution
SpatialPadd(keys=['image', 'label'], spatial_size=patch_size, method= 'end'),
ToTensord(keys=['image', 'label'])])
else:
val_transforms = Compose([
LoadImaged(keys=['image', 'label']),
AddChanneld(keys=['image', 'label']),
CropForegroundd(keys=['image', 'label'], source_key='image'), # crop CropForeground
ThresholdIntensityd(keys=['image'], threshold=-350, above=True, cval=-350), # Threshold CT
ThresholdIntensityd(keys=['image'], threshold=350, above=False, cval=350),
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
SpatialPadd(keys=['image', 'label'], spatial_size=patch_size, method='end'), # pad if the image is smaller than patch
ToTensord(keys=['image', 'label'])])
else:
if resolution is not None:
val_transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
ThresholdIntensityd(keys=['image'], threshold=-350, above=True, cval=-350), # Threshold CT
ThresholdIntensityd(keys=['image'], threshold=350, above=False, cval=350),
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
Spacingd(keys=['image'], pixdim=resolution, mode=('bilinear')), # resolution
SpatialPadd(keys=['image'], spatial_size=patch_size, method= 'end'), # pad if the image is smaller than patch
ToTensord(keys=['image'])])
else:
val_transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
ThresholdIntensityd(keys=['image'], threshold=-350, above=True, cval=-350), # Threshold CT
ThresholdIntensityd(keys=['image'], threshold=350, above=False, cval=350),
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
SpatialPadd(keys=['image'], spatial_size=patch_size, method='end'), # pad if the image is smaller than patch
ToTensord(keys=['image'])])
val_ds = monai.data.Dataset(data=files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=0, collate_fn=list_data_collate, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, reduction="mean")
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)])
# try to use all the available GPUs
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids # Multi-gpu selector for training
if args.gpu_ids != '-1':
num_gpus = len(args.gpu_ids.split(','))
else:
num_gpus = 0
print('number of GPU:', num_gpus)
if num_gpus > 1:
# build the network
net = build_net().cuda()
net = torch.nn.DataParallel(net)
net.load_state_dict(torch.load(weights))
else:
net = build_net().cuda()
net.load_state_dict(new_state_dict(weights))
# define sliding window size and batch size for windows inference
roi_size = patch_size
sw_batch_size = 4
net.eval()
with torch.no_grad():
if label is None:
for val_data in val_loader:
val_images = val_data["image"].cuda()
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, net)
val_outputs = post_trans(val_outputs)
# val_outputs = (val_outputs.sigmoid() >= 0.5).float()
else:
metric_sum = 0.0
metric_count = 0
for val_data in val_loader:
val_images, val_labels = val_data["image"].cuda(), val_data["label"].cuda()
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, net)
val_outputs = post_trans(val_outputs)
value, _ = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
# val_outputs = (val_outputs.sigmoid() >= 0.5).float()
metric = metric_sum / metric_count
print("Evaluation Metric (Dice):", metric)
result_array = val_outputs.squeeze().data.cpu().numpy()
# Remove the pad if the image was smaller than the patch in some directions
result_array = result_array[0:resampled_size[0],0:resampled_size[1],0:resampled_size[2]]
# resample back to the original resolution
if resolution is not None:
result_array_np = np.transpose(result_array, (2, 1, 0))
result_array_temp = sitk.GetImageFromArray(result_array_np)
result_array_temp.SetSpacing(resolution)
label = resample_sitk_image(result_array_temp, spacing=original_resolution, interpolator='nearest')
res = resize(label, crop_shape, sitk.sitkNearestNeighbor)
result_array = np.transpose(np.rint(sitk.GetArrayFromImage(res)), axes=(2, 1, 0))
# recover the cropped background before saving the image
empty_array = np.zeros(original_shape)
empty_array[coord1[0]:coord2[0],coord1[1]:coord2[1],coord1[2]:coord2[2]] = result_array
result_seg = from_numpy_to_itk(empty_array, image)
# save label
writer = sitk.ImageFileWriter()
writer.SetFileName(result)
writer.Execute(result_seg)
print("Saved Result at:", str(result))
if __name__ == "__main__":
segment(args.image, args.label, args.result, args.weights, args.resolution, args.patch_size)