|
a |
|
b/monai 0.5.0/check_loader_patches.py |
|
|
1 |
# Copyright 2020 MONAI Consortium |
|
|
2 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
3 |
# you may not use this file except in compliance with the License. |
|
|
4 |
# You may obtain a copy of the License at |
|
|
5 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
6 |
# Unless required by applicable law or agreed to in writing, software |
|
|
7 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
8 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
9 |
# See the License for the specific language governing permissions and |
|
|
10 |
# limitations under the License. |
|
|
11 |
|
|
|
12 |
import os |
|
|
13 |
import sys |
|
|
14 |
from glob import glob |
|
|
15 |
import tempfile |
|
|
16 |
import numpy as np |
|
|
17 |
import matplotlib.pyplot as plt |
|
|
18 |
import nibabel as nib |
|
|
19 |
import torch |
|
|
20 |
from torch.utils.data import DataLoader |
|
|
21 |
from init import Options |
|
|
22 |
import monai |
|
|
23 |
from monai.data import ArrayDataset, GridPatchDataset, create_test_image_3d |
|
|
24 |
from monai.transforms import (Compose, LoadImaged, AddChanneld, Transpose, Resized, CropForegroundd, CastToTyped,RandGaussianSmoothd, |
|
|
25 |
ScaleIntensityd, ToTensord, RandSpatialCropd, Rand3DElasticd, RandAffined, SpatialPadd, |
|
|
26 |
Spacingd, Orientationd, RandZoomd, ThresholdIntensityd, RandShiftIntensityd, RandGaussianNoised, BorderPadd,RandAdjustContrastd, NormalizeIntensityd,RandFlipd, ScaleIntensityRanged) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
class IndexTracker(object): |
|
|
30 |
def __init__(self, ax, X): |
|
|
31 |
self.ax = ax |
|
|
32 |
ax.set_title('use scroll wheel to navigate images') |
|
|
33 |
|
|
|
34 |
self.X = X |
|
|
35 |
rows, cols, self.slices = X.shape |
|
|
36 |
self.ind = self.slices//2 |
|
|
37 |
|
|
|
38 |
self.im = ax.imshow(self.X[:, :, self.ind],cmap= 'gray') |
|
|
39 |
self.update() |
|
|
40 |
|
|
|
41 |
def onscroll(self, event): |
|
|
42 |
print("%s %s" % (event.button, event.step)) |
|
|
43 |
if event.button == 'up': |
|
|
44 |
self.ind = (self.ind + 1) % self.slices |
|
|
45 |
else: |
|
|
46 |
self.ind = (self.ind - 1) % self.slices |
|
|
47 |
self.update() |
|
|
48 |
|
|
|
49 |
def update(self): |
|
|
50 |
self.im.set_data(self.X[:, :, self.ind]) |
|
|
51 |
self.ax.set_ylabel('slice %s' % self.ind) |
|
|
52 |
self.im.axes.figure.canvas.draw() |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def plot3d(image): |
|
|
56 |
original=image |
|
|
57 |
original = np.rot90(original, k=-1) |
|
|
58 |
fig, ax = plt.subplots(1, 1) |
|
|
59 |
tracker = IndexTracker(ax, original) |
|
|
60 |
fig.canvas.mpl_connect('scroll_event', tracker.onscroll) |
|
|
61 |
plt.show() |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
if __name__ == "__main__": |
|
|
65 |
|
|
|
66 |
opt = Options().parse() |
|
|
67 |
|
|
|
68 |
train_images = sorted(glob(os.path.join(opt.images_folder, 'train', 'image*.nii'))) |
|
|
69 |
train_segs = sorted(glob(os.path.join(opt.labels_folder, 'train', 'label*.nii'))) |
|
|
70 |
|
|
|
71 |
data_dicts = [{'image': image_name, 'label': label_name} |
|
|
72 |
for image_name, label_name in zip(train_images, train_segs)] |
|
|
73 |
|
|
|
74 |
monai_transforms = [ |
|
|
75 |
|
|
|
76 |
LoadImaged(keys=['image', 'label']), |
|
|
77 |
AddChanneld(keys=['image', 'label']), |
|
|
78 |
Orientationd(keys=["image", "label"], axcodes="RAS"), |
|
|
79 |
# ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135), |
|
|
80 |
# ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215), |
|
|
81 |
CropForegroundd(keys=['image', 'label'], source_key='image', start_coord_key='foreground_start_coord', |
|
|
82 |
end_coord_key='foreground_end_coord', ), # crop CropForeground |
|
|
83 |
NormalizeIntensityd(keys=['image']), |
|
|
84 |
ScaleIntensityd(keys=['image']), |
|
|
85 |
# Spacingd(keys=['image', 'label'], pixdim=opt.resolution, mode=('bilinear', 'nearest')), |
|
|
86 |
|
|
|
87 |
SpatialPadd(keys=['image', 'label'], spatial_size=opt.patch_size, method= 'end'), |
|
|
88 |
RandSpatialCropd(keys=['image', 'label'], roi_size=opt.patch_size, random_size=False), |
|
|
89 |
ToTensord(keys=['image', 'label','foreground_start_coord', 'foreground_end_coord'],) |
|
|
90 |
] |
|
|
91 |
|
|
|
92 |
transform = Compose(monai_transforms) |
|
|
93 |
check_ds = monai.data.Dataset(data=data_dicts, transform=transform) |
|
|
94 |
loader = DataLoader(check_ds, batch_size=1, shuffle=True, num_workers=0, pin_memory=torch.cuda.is_available()) |
|
|
95 |
check_data = monai.utils.misc.first(loader) |
|
|
96 |
im, seg, coord1, coord2 = (check_data['image'][0], check_data['label'][0],check_data['foreground_start_coord'][0], |
|
|
97 |
check_data['foreground_end_coord'][0]) |
|
|
98 |
|
|
|
99 |
print(im.shape, seg.shape, coord1, coord2) |
|
|
100 |
|
|
|
101 |
vol = im[0].numpy() |
|
|
102 |
mask = seg[0].numpy() |
|
|
103 |
|
|
|
104 |
print(vol.shape, mask.shape) |
|
|
105 |
plot3d(vol) |
|
|
106 |
plot3d(mask) |