Diff of /check_loader_patches.py [000000] .. [83198a]

Switch to unified view

a b/check_loader_patches.py
1
# Copyright 2020 MONAI Consortium
2
# Licensed under the Apache License, Version 2.0 (the "License");
3
# you may not use this file except in compliance with the License.
4
# You may obtain a copy of the License at
5
#     http://www.apache.org/licenses/LICENSE-2.0
6
# Unless required by applicable law or agreed to in writing, software
7
# distributed under the License is distributed on an "AS IS" BASIS,
8
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
# See the License for the specific language governing permissions and
10
# limitations under the License.
11
12
import os
13
import sys
14
from glob import glob
15
import tempfile
16
import numpy as np
17
import matplotlib.pyplot as plt
18
import nibabel as nib
19
import torch
20
from torch.utils.data import DataLoader
21
from init import Options
22
import monai
23
from monai.data import ArrayDataset, GridPatchDataset, create_test_image_3d
24
from monai.transforms import (Compose, LoadImaged, AddChanneld, Transpose, Resized, CropForegroundd, CastToTyped,RandGaussianSmoothd,
25
                              ScaleIntensityd, ToTensord, RandSpatialCropd, Rand3DElasticd, RandAffined, SpatialPadd,
26
    Spacingd, Orientationd, RandZoomd, ThresholdIntensityd, RandShiftIntensityd, RandGaussianNoised, BorderPadd,RandAdjustContrastd, NormalizeIntensityd,RandFlipd, ScaleIntensityRanged)
27
28
29
class IndexTracker(object):
30
    def __init__(self, ax, X):
31
        self.ax = ax
32
        ax.set_title('use scroll wheel to navigate images')
33
34
        self.X = X
35
        rows, cols, self.slices = X.shape
36
        self.ind = self.slices//2
37
38
        self.im = ax.imshow(self.X[:, :, self.ind],cmap= 'gray')
39
        self.update()
40
41
    def onscroll(self, event):
42
        print("%s %s" % (event.button, event.step))
43
        if event.button == 'up':
44
            self.ind = (self.ind + 1) % self.slices
45
        else:
46
            self.ind = (self.ind - 1) % self.slices
47
        self.update()
48
49
    def update(self):
50
        self.im.set_data(self.X[:, :, self.ind])
51
        self.ax.set_ylabel('slice %s' % self.ind)
52
        self.im.axes.figure.canvas.draw()
53
54
55
def plot3d(image):
56
    original=image
57
    original = np.rot90(original, k=-1)
58
    fig, ax = plt.subplots(1, 1)
59
    tracker = IndexTracker(ax, original)
60
    fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
61
    plt.show()
62
63
64
if __name__ == "__main__":
65
66
    opt = Options().parse()
67
68
    train_images = sorted(glob(os.path.join(opt.images_folder, 'train', 'image*.nii')))
69
    train_segs = sorted(glob(os.path.join(opt.labels_folder, 'train', 'label*.nii')))
70
71
    data_dicts = [{'image': image_name, 'label': label_name}
72
                  for image_name, label_name in zip(train_images, train_segs)]
73
74
    monai_transforms = [
75
76
        LoadImaged(keys=['image', 'label']),
77
        AddChanneld(keys=['image', 'label']),
78
        # Orientationd(keys=["image", "label"], axcodes="RAS"),
79
        # ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135),
80
        # ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
81
        CropForegroundd(keys=['image', 'label'], source_key='image', start_coord_key='foreground_start_coord',
82
                        end_coord_key='foreground_end_coord', ),  # crop CropForeground
83
        NormalizeIntensityd(keys=['image']),
84
        ScaleIntensityd(keys=['image']),
85
        # Spacingd(keys=['image', 'label'], pixdim=opt.resolution, mode=('bilinear', 'nearest')),
86
87
        SpatialPadd(keys=['image', 'label'], spatial_size=opt.patch_size, method= 'end'),
88
        RandSpatialCropd(keys=['image', 'label'], roi_size=opt.patch_size, random_size=False),
89
        ToTensord(keys=['image', 'label','foreground_start_coord', 'foreground_end_coord'],)
90
    ]
91
92
    transform = Compose(monai_transforms)
93
    check_ds = monai.data.Dataset(data=data_dicts, transform=transform)
94
    loader = DataLoader(check_ds, batch_size=1, shuffle=True, num_workers=0, pin_memory=torch.cuda.is_available())
95
    check_data = monai.utils.misc.first(loader)
96
    im, seg, coord1, coord2 = (check_data['image'][0], check_data['label'][0],check_data['foreground_start_coord'][0],
97
                      check_data['foreground_end_coord'][0])
98
99
    print(im.shape, seg.shape, coord1, coord2)
100
101
    vol = im[0].numpy()
102
    mask = seg[0].numpy()
103
104
    print(vol.shape, mask.shape)
105
    plot3d(vol)
106
    plot3d(mask)