{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "KOIOS_Project.ipynb",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": []
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Nl0GwMq5E4e2"
},
"source": [
"# Image Processing with Keras - Capstone Project (Koios Medical)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "PPtuBGKJz8-y"
},
"source": [
"by Sabbir Mohammed
*Project Description: Deep Learning Project focused on object localization of potential tumors and legions on thyroid ultrasound images.*
*This notebook utilizes the Keras framework, running on tensor flow to execute a Convolution Neural Network to train a model. The pre-trained weights used to initialize this model is imported from the Xception model hosted under Keras Applications (link below)*"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "h6JO0iAyE4fA"
},
"source": [
"- - -"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uxj3GZe2DVU_",
"colab_type": "text"
},
"source": [
"
\n", " | image_id | \n", "x1 | \n", "y1 | \n", "x2 | \n", "y2 | \n", "filename | \n", "
---|---|---|---|---|---|---|
0 | \n", "146 | \n", "311.0 | \n", "77.0 | \n", "373.0 | \n", "126.0 | \n", "./cimalab/thyroid/106_2.jpg | \n", "
1 | \n", "147 | \n", "258.0 | \n", "72.0 | \n", "328.0 | \n", "123.0 | \n", "./cimalab/thyroid/106_3.jpg | \n", "