[110cc9]: / DiceLossLayer / dice_loss_layer.cpp

Download this file

90 lines (79 with data), 3.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <vector>
#include <fstream>
#include <iostream>
#include "caffe/layers/dice_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
#define FLT_EPSILON 0.000001
namespace caffe {
template <typename Dtype>
void DiceLossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::LayerSetUp(bottom, top);
sigmoid_bottom_vec_.clear();
sigmoid_bottom_vec_.push_back(bottom[0]);
sigmoid_top_vec_.clear();
sigmoid_top_vec_.push_back(sigmoid_output_.get());
sigmoid_layer_->SetUp(sigmoid_bottom_vec_, sigmoid_top_vec_);
}
template <typename Dtype>
void DiceLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
CHECK_EQ(bottom[0]->count(), bottom[1]->count()) <<
"DICE_LOSS layer inputs must have the same count.";
sigmoid_layer_->Reshape(sigmoid_bottom_vec_, sigmoid_top_vec_);
}
template <typename Dtype>
void DiceLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
sigmoid_bottom_vec_[0] = bottom[0];
sigmoid_layer_->Forward(sigmoid_bottom_vec_, sigmoid_top_vec_);
const int count = bottom[0]->count();
const Dtype* target = bottom[1]->cpu_data();
Dtype loss = 1;
Dtype up = (Dtype) FLT_EPSILON;
Dtype down = (Dtype) FLT_EPSILON;
const Dtype* sigmoid_output_data = sigmoid_output_->cpu_data();
for (int i = 0; i < count; ++i) {
up += 2 * target[i] * sigmoid_output_data[i];
down += target[i] + sigmoid_output_data[i];
}
loss -= up / down;
top[0]->mutable_cpu_data()[0] = loss;
}
template <typename Dtype>
void DiceLossLayer<Dtype>::Backward_cpu(
const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
const int count = bottom[0]->count();
const Dtype* sigmoid_output_data = sigmoid_output_->cpu_data();
const Dtype* target = bottom[1]->cpu_data();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
Dtype intersection = 0;
Dtype Union = 0;
for (int i = 0; i < count; ++i) {
intersection += target[i] * sigmoid_output_data[i];
Union += target[i] + sigmoid_output_data[i];
}
Dtype down = (Union + (Dtype) FLT_EPSILON) * (Union + (Dtype) FLT_EPSILON);
for (int i = 0; i < count; ++i) {
Dtype up = 2 * target[i] * (Union + (Dtype) FLT_EPSILON) -
2 * intersection - (Dtype) FLT_EPSILON;
bottom_diff[i] = - (up / down) * sigmoid_output_data[i] *
(1 - sigmoid_output_data[i]);
}
const Dtype loss_weight = top[0]->cpu_diff()[0];
caffe_scal(count, loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
// STUB_GPU_BACKWARD(SigmoidCrossEntropyLossLayer, Backward);
#endif
INSTANTIATE_CLASS(DiceLossLayer);
REGISTER_LAYER_CLASS(DiceLoss);
} // namespace caffe