import os
import subprocess
from glob2 import glob
from pydicom import dcmread
import numpy as np
from time import time
import json
import jsbeautifier
from datetime import datetime
import re
import nibabel as nib
from Crawler.crawler_segmentation import seg_from_model, display_segmentations
from Crawler.crawler_radiomics import gen_images_csv, run_radiomics, load_study_data, init_dilation_class
def load_log_file(log_file):
# Load database
if os.path.exists(log_file):
with open(log_file) as f:
log = json.load(f)
else:
log = {}
return log
class DataLoader:
def __init__(self, base_path, folder_regex, log_file):
self.base_path = base_path
self.folder_regex = folder_regex
self.log_file = log_file
self.ind = 0
self.current_files = False
self.patient_name = []
self.study_date = []
self.acq_time = []
self.protocol = []
self.next_folder = ''
print('Searching for data on the NAS')
t1 = time()
# Get folder names
walker = [x[0] for x in os.walk(base_path)]
walker.remove(base_path)
# Get subdirectory names
subdirs = [os.path.split(i) for i in walker]
# # Select folders which match the regex
# image_paths = [name for name in subdirs
# if name[1].lower().find(folder_regex.lower()) != -1]
image_paths = []
for name in subdirs:
files = glob(os.path.join(os.path.join(name[0], name[1]), folder_regex))
if files:
image_paths.append(name)
self.subdirs = [os.path.join(p[0], p[1]) for p in image_paths]
# Sort files by date (oldest to newest)
self.subdirs.sort()
# Bundle scans
self._bundle_scans()
print('\tTime to build folder structure: %0.2f seconds' % (time() - t1))
# Load log file
print('Loading log file\n\t%s' % self.log_file)
self.log = load_log_file(log_file)
def _bundle_scans(self):
"""
Bundles directories together by study using similar base folders.
Returns:
"""
# Set up used index
bases = []
bundles = []
for i in range(len(self.subdirs)):
# Get base directory
bs = self.subdirs[i]
flag = True
while flag:
bs1 = os.path.split(bs)[0]
if bs1 == self.base_path.rstrip('/').rstrip('\\'):
flag = False
else:
bs = bs1
# Proceed if the base name as not been processed
if bs not in bases:
bases.append(bs)
# Find base path matches
matches = [k for (k, name) in enumerate(self.subdirs) if re.findall(bs, name)]
# Fill in indexes and create output vector
bundles.append([self.subdirs[f] for f in matches])
# Update subdirectories
self.subdirs = bundles
def get_folder(self):
"""
Pulls the next folder containing Dicom data
Returns:
(str): path to a folder containing Dicom files
"""
if self.ind == len(self.subdirs):
folder_exists = False
else:
self.next_folder = self.subdirs[self.ind]
self.ind += 1
self.current_files = False
folder_exists = True
return folder_exists
def load_study_data(self):
"""
Loads the patient name and study date using the data's Dicom header.
Returns:
"""
# Get filenames
if not self.current_files:
self._get_dicom_files()
self.patient_name = []
self.study_date = []
self.acq_time = []
self.protocol = []
# Return animal ID (K-number, found in PatientName)
for i in range(len(self.names)):
dcm = dcmread(self.names[i][0])
# Get and decode animal ID (K-number, found in PatientName)
self.patient_name = dcm.PatientName.original_string.decode()
self.patient_name = self.patient_name.strip('^') # Some animals have following ^^^^
self.patient_name = 'K' + self.patient_name
# Get study date and time
self.study_date = dcm.StudyDate
self.acq_time.append(dcm.AcquisitionTime)
# Get protocol data
self.protocol.append(dcm.ProtocolName)
return [self.patient_name, self.study_date]
def load_dicom(self):
"""
Loads Dicom image data from the last returned directory
Returns:
numpy array: a 3D image volume
"""
if not self.current_files:
self._get_dicom_files()
# Sort by image protocol
sort_inds = self._sort_protocols()
# For each of the three contrasts
for i in range(len(self.names)):
# Get index corresponding to the correct contrast (T1, T1c, T2)
ind = sort_inds[i]
if i == 0:
# Load Dicom data
dcm = dcmread(self.names[i][0])
dims = (dcm.Rows, dcm.Columns, len(self.names[0]), len(self.names))
im_vol = np.zeros(shape=dims)
for (ii, name) in enumerate(self.names[i]):
# Load Dicom
dcm = dcmread(name)
# Load files as a numpy array
im_vol[:, :, ii, ind] = dcm.pixel_array
self.current_files = False
return im_vol
def compare_with_log(self):
"""
Log data is a dictionary with fields: 'AnimalID', 'Scan1', 'Scan2'
Returns:
bool: True if the animal and scan date appear in the processed log
"""
# Initialize variables
animal_scanned = False
date_scanned = False
if self.patient_name in self.log.keys(): # If the animal exists in the DB
animal_scanned = True
if self.study_date in self.log[self.patient_name]['StudyDate']: # If the scan date exists for the animal
date_scanned = True
already_processed = animal_scanned and date_scanned
if already_processed:
print('\t\tScan already processed!')
return already_processed
def _get_dicom_files(self, file_regexp='*.dcm'):
self.names = []
# For each contrast
print('Processing:')
for c in range(3):
image_path = os.path.join(self.next_folder[c], file_regexp)
print('\t %s' % self.next_folder[c])
# Get file names
self.names.append(glob(image_path))
self.names[c].sort()
# Flag file list as current
self.current_files = True
def _sort_protocols(self):
"""
Sort scans so that the data can be returned as T1, T1 with contrast, and T2.
Returns:
"""
# Initialize the index for T2 = 2, only need to rearrange T1 contrasts
sort_inds = [2 for _ in range(len(self.names))]
times = []
# Collect protocol and time data
for i in range(len(self.names)):
if re.findall('T1', self.protocol[i]):
sort_inds[i] = 1
times.append(datetime.strptime(self.acq_time[i], '%H%M%S'))
# Sort T1 scans by time
t = [(i, times[i]) for (i, ind) in enumerate(sort_inds) if ind == 1]
if t[0][1] < t[1][1]: # if the first index happened first
sort_inds[t[0][0]] = 0
else:
sort_inds[t[1][0]] = 0
return sort_inds
class SaveResults:
def __init__(self, data_base_path, save_folder, log_file):
# Initialize variables
self.animal_folder = None
self.curr_scan_path = None
self.snames = []
# Set up paths
self.base_save_path = os.path.join(data_base_path, save_folder)
self.log_file = log_file
if not os.path.exists(self.base_save_path):
os.mkdir(self.base_save_path)
# Load log file
self.log = load_log_file(log_file)
def append_to_log(self, animal_id, study_date):
"""
Appends the animal and study date to the log of processed studies
Args:
animal_id (str): The animal K-number
study_date (str): The study date (YYYYMMDD)
Returns:
"""
if animal_id in self.log.keys():
# Animal has been scanned before
self.log[animal_id]['StudyDate'].append(study_date)
else:
# New entry
self.log[animal_id] = {'StudyDate': [study_date]}
def save_log(self):
"""
Saves the dictionary detailing which sets have been processed
Returns:
"""
# Reformat the json file for easier reading
formatted_log = jsbeautifier.beautify(json.dumps(self.log))
with open(self.log_file, 'w') as f:
f.write(formatted_log)
def gen_save_path(self, animal_id, study_date):
"""
Generates output folders for analyzed data.
Args:
animal_id (str): The animal K-number
study_date (str): The study date (YYYYMMDD)
Returns:
str: the base path for the animal
str: the study date path
"""
# Generate animal folder
animal_folder = os.path.join(self.base_save_path, animal_id)
# Make the animal folder if it does not exist
if not os.path.exists(animal_folder):
os.mkdir(animal_folder)
# Set up current animal save path
curr_animal_path = os.path.join(animal_folder, study_date)
if not os.path.exists(curr_animal_path):
os.mkdir(curr_animal_path)
self.animal_folder = animal_folder
self.curr_scan_path = curr_animal_path
# Set up save names
snames = ['T1.nii.gz', 'T1c.nii.gz', 'T2.nii.gz']
self.snames = [os.path.join(self.curr_scan_path, name) for name in snames]
return self.snames
def resave_image_volumes(self, X):
"""
Re-saves image volumes into the processing folder for ease of access
Args:
X (4D numpy array): image volume (dims: Z, X, Y, num_vols)
Returns:
"""
# Get image dimensions
sz = X.shape
# Save image volumes
for i in range(sz[-1]):
tmp = X[:, :, :, i].squeeze().swapaxes(0, 1)
nib.save(nib.Nifti1Image(tmp, np.eye(4)), self.snames[i])
def save_dicom_header(self, dicom_fname):
# Collect Dicom header
dcm = dcmread(dicom_fname)
# Set up output file
sname = os.path.join(self.curr_scan_path, 'dicom_header.txt')
# Write output file
with open(sname, 'w') as f:
f.write(dcm.__str__())
@staticmethod
def clear_working_directory():
"""
Clears all files from the working directory.
Returns:
"""
# Get working directory
working_path = os.path.join(os.getcwd(), 'Working')
# Get a list if items in the working directory
working_files = glob(os.path.join(working_path, '*.*'))
# Delete working files
for file in working_files:
os.remove(file)
class ProcessAnimal:
def __init__(self, snames):
self.T1_file = snames[0]
self.T1c_file = snames[1]
self.T2_file = snames[2]
self.cur_scan_path = os.path.split(snames[0])[0]
self.mask_file = ''
self.radiomic_files = []
self.radiomics_sfile = []
self.dilate = 25
# init_dilation_class(self.dilate)
def bias_correct(self):
# Set up correction parameters
# Get weighted image
weight_im = self.T1_file
# Get the T2 weighted image (the only one that needs bias correction)
T2 = self.T2_file
# Set up output image
T2_out = os.path.join(self.cur_scan_path, 'T2_cor.nii.gz')
# Set up the bias corrector command
cmd = 'N4BiasFieldCorrection ' \
'--bspline-fitting [ 1x1x1, 3 ] ' \
'-d 3 ' \
'--input-image "%s" ' \
'--convergence [ 100x100x100, 0.005 ] ' \
'--output "%s" ' \
'--shrink-factor 4 ' \
'--weight-image "%s" ' \
'--histogram-sharpening [0.3, 0.01, 200]' % (T2, T2_out, weight_im)
subprocess.Popen(cmd, shell=True).wait()
self.T2_file = T2_out
def segment_tumor(self, model_path):
# Load threshold from metrics file
mfile = os.path.join(model_path, 'metrics.txt')
with open(mfile, 'r') as f:
dat = f.readlines()
# Find last threshold calculated from the training set
threshold = 0.5
for z in range(-1, -12, -1):
if 'Best threshold' in dat[z]:
threshold = [i for i in dat[z] if i.isdigit() or i == '.']
threshold = float(''.join(threshold))
break
# Run segmentation
t2, y_pred = seg_from_model(model_path=model_path,
im_paths=[self.T1_file, self.T1c_file, self.T2_file],
threshold=threshold)
# Save the new segmentation
self.mask_file = os.path.join(self.cur_scan_path, 'tumor_seg.nii.gz')
nib.save(nib.Nifti1Image(y_pred, np.eye(4)), self.mask_file)
# Make segmentation images
display_segmentations(t2, y_pred, self.cur_scan_path)
def compute_radiomics(self, animal_id):
# Set up values for multiple mask configurations
sfiles = ['radiomic_features.csv',
'radiomic_features_bed.csv',
'radiomic_features_edge.csv']
dilate = [0, self.dilate, self.dilate]
diff_mask = [False, False, True]
# Set up empty list for radiomics files
self.radiomics_sfile = []
for i in range(3):
if i == 0:
regen = True
else:
regen = False
# Data paths
base_path = self.cur_scan_path
save_base_path = os.path.join(os.getcwd(), 'Working')
# Append the current radiomics file
self.radiomics_sfile.append(os.path.join(base_path, sfiles[i]))
# Generate CSV file of images/masks and re-save images as 16 bit
csv_file = gen_images_csv([self.T1_file, self.T1c_file, self.T2_file],
mask_file=self.mask_file,
save_base_path=save_base_path,
dilate=dilate[i],
ncontrasts=3,
regen=regen,
diff_mask=diff_mask[i],
animal_id=animal_id)
# Run radiomics
run_radiomics(self.cur_scan_path, csv_file, self.radiomics_sfile[i])
def sort_radiomics(self, animal_id, study_date, base_path, summary_file):
# Define data base path
base_path = os.path.join(base_path, 'Results')
# Load study data
df = load_study_data(summary_file)
# Define dictionary keys
kid_key = 'Kirsch lab iD'
rtd_key = 'Date of irradiation 20Gy x'
# Convert study date to Datetime object for comparison
study_dt = datetime.strptime(study_date, '%Y%m%d')
# Convert the animal ID to a number for comparison
an_id = int(animal_id.strip('K').strip('^'))
# Get dataset animals
animals = df[kid_key].astype('int')
# Set up flags
classified = False
control_flag = False
post_rt = False
# Determine if the animal appears in the control of PD1 groups
if any(an_id == animals):
# Animal exists in database
classified = True
# Get animal study group
group = df['Group'][an_id == animals].to_list()
group = group[0]
if group == 'Control':
control_flag = True
if group == 'PD1':
control_flag = False
else:
print('Unclassified')
# Set up paths to radiomics files in the animal directory
rad_files = [os.path.join(self.cur_scan_path, file) for file in
['radiomic_features.csv',
'radiomic_features_bed.csv',
'radiomic_features_edge.csv']
]
# Determine if the imaging was performed pre or post RT
if classified:
# Get RT date (already in Datetime)
rt_date = df[rtd_key][an_id == animals]
# Compare the RT and study date
if all(rt_date < study_dt):
# The study happened post-RT
post_rt = True
# Pre-RT, all groups are the same
if not post_rt:
fname = os.path.join(base_path, 'Radiomics_preRT.txt')
# Control group, post RT
if control_flag and post_rt:
fname = os.path.join(base_path, 'Radiomics_control_postRT.txt')
# PD1 group, post RT
if not control_flag and post_rt:
fname = os.path.join(base_path, 'Radiomics_PD1_postRT.txt')
else:
# If the animal does not appear in the excel sheet
fname = os.path.join(base_path, 'Unfiled_animals.txt')
# Write log file
with open(fname, 'a') as f:
for file in rad_files:
f.write('%s\n' % file)