[7c5f70]: / Radiomics / Nifti_float_to_16bit.py

Download this file

390 lines (293 with data), 13.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import sys
import os
from glob2 import glob
import nibabel as nib
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from skimage.morphology import ball, binary_dilation, binary_closing
def get_foldernames(base_path, no_small=False):
walker = [x[0] for x in os.walk(base_path)]
walker.remove(base_path)
# Get subdirectory names
subdirs = [os.path.split(i) for i in walker]
# Select folders with all-numeric names
paths = [name for (i, name) in enumerate(subdirs)
if all(char.isdigit() for char in name[1])]
# Remove folders without 2 weeks of data
if no_small:
paths = [name for name in paths if len(name[1]) > 3]
return [os.path.join(p[0], p[1]) for p in paths]
def get_filenames(path, regexp):
image_path = os.path.join(path, regexp)
# Get file names
names = glob(image_path)
return names
def gen_savename(files, save_base_path, save_type, ext='.nii'):
sfiles = []
ids = []
for file in files:
# Get basepath and animal id
base_path, _ = os.path.split(file[0])
base_path, id = os.path.split(base_path)
# save_base_path = os.path.join(base_path, 'Radiomics_16bit')
sfiles.append(os.path.join(save_base_path, id + save_type + ext + '.gz'))
ids.append(id)
return sfiles, ids
def rewrite_nifti(files, sfiles):
for i in range(len(files)):
# Load file
X = nib.load(files[i][0]).get_data().astype(np.float32)
# Normalize if image
if len(np.unique(X)) > 3:
X = (X - X.min()) / (X.max() - X.min())
X = (2**16 - 1) * X
X = X.astype(np.uint16)
# Rewrite file
nib.save(nib.Nifti1Image(X, np.eye(4)), sfiles[i])
def dilate_masks(mask_files, im_files, dilate_kernel_size, diff=False):
print('Dilating tumor masks')
sfiles = []
for i in range(len(mask_files)):
print('\t%s' % mask_files[i])
# Generate updated filename
path, ext1 = os.path.splitext(mask_files[i])
path, ext2 = os.path.splitext(path)
path, filename = os.path.split(path)
sfile = os.path.join(path, filename + '_dilated' + ext2 + ext1)
# Load file
X_mask = nib.load(mask_files[i]).get_data().astype(np.bool)
X = nib.load(im_files[i][0]).get_data().astype(np.float32)
# Dilate the mask
selem = ball(dilate_kernel_size)
X_dia = binary_dilation(X_mask, selem)
# Remove air in the mask
# fig, ax = plt.subplots(1, 3, sharey=True)
# ax[0].imshow(X[:, :, 35], cmap='gray')
# ax[0].imshow(np.ma.masked_where(X_mask == 0, X_mask)[:, :, 35], alpha=0.5, cmap='summer')
# ax[0].set_title('Original mask')
#
# ax[1].imshow(X[:, :, 35], cmap='gray')
# ax[1].imshow(np.ma.masked_where(X_dia == 0, X_dia)[:, :, 35], alpha=0.5, cmap='summer')
# ax[1].set_title('Dilated mask')
#
# X_dia[X < 700] = 0
# X_dia = binary_closing(X_dia, selem=selem)
#
# ax[2].imshow(X[:, :, 35], cmap='gray')
# ax[2].imshow(np.ma.masked_where(X_dia == 0, X_dia)[:, :, 35], alpha=0.5, cmap='summer')
# ax[2].set_title('Thresholded, closed mask')
#
# plt.savefig(os.path.join(path, filename + '.png'))
# plt.close(fig)
if diff:
X_dia = np.logical_xor(X_dia, X_mask)
# Save the file
nib.save(nib.Nifti1Image(X_dia.astype(np.uint16), np.eye(4)), sfile)
sfiles.append(sfile)
return sfiles
def write_csv(csv_file, id, image_file, mask_file):
f = open(csv_file, 'w')
f.write('ID,Image,Mask\n')
for i in range(len(id)):
write_str = id[i] + ',' + image_file[i] + ',' + mask_file[i] + '\n'
f.write(write_str)
def gen_images_csv(base_path, save_base_path, dilate, ncontrasts=1, regen=True, diff_mask=False):
"""
Compiles images to be processed into a csv for radiomic processing
TODO: add multi-contrast processing
Args:
base_path (str): path to the image base directories
save_base_path (str): path in which to save images
dilate (int): mask dilation radius, no dilation is performed if dilate=0
ncontrasts (int): the number of image contrasts to use, only 1 or 3 are allowed
regen (bool): whether or not to re-write image files and masks as uint16
Returns:
csv_file (str): path to the csv file containing images to be processed
"""
# Make sure save path exists
if not os.path.exists(save_base_path):
os.mkdir(save_base_path)
# Dilation setting for masks - UPDATE VALUES
if dilate == 0:
dilate = False
dilate_rad = 0
else:
dilate = True
dilate_rad = 10
# Get subdirs of the base paths
subdirs = get_foldernames(base_path, no_small=True)
if ncontrasts == 1:
# Get filenames
image1_regexp = '*1_T2*'
image2_regexp = '*2_T2*'
label1_regexp = '*1-label.nii'
label2_regexp = '*2-label.nii'
image1 = [get_filenames(sub, image1_regexp) for sub in subdirs]
image2 = [get_filenames(sub, image2_regexp) for sub in subdirs]
label1 = [get_filenames(sub, label1_regexp) for sub in subdirs]
label2 = [get_filenames(sub, label2_regexp) for sub in subdirs]
# Get save names and ids
simage1, id = gen_savename(image1, save_base_path, save_type='_T2_1')
simage2, _ = gen_savename(image2, save_base_path, save_type='_T2_2')
slabel1, _ = gen_savename(label1, save_base_path, save_type='_mask_1')
slabel2, _ = gen_savename(label2, save_base_path, save_type='_mask_2')
# Rewrite to 16 bit
if regen:
print('Re-writing images as 16-bit')
rewrite_nifti(image1, simage1)
rewrite_nifti(image2, simage2)
rewrite_nifti(label1, slabel1)
rewrite_nifti(label2, slabel2)
# Dilate masks
if dilate:
slabel1 = dilate_masks(slabel1, image1, dilate_kernel_size=dilate_rad, diff=diff_mask)
slabel2 = dilate_masks(slabel2, image2, dilate_kernel_size=dilate_rad, diff=diff_mask)
# Write CSV file
csv_file = os.path.join(save_base_path, 'radiomics_files.csv')
write_csv(csv_file, 2 * id, simage1 + simage2, slabel1 + slabel2)
elif ncontrasts == 3:
# Get filenames
image1T1_regexp = '*1_T1.nii'
image1T1c_regexp = '*1_T1*C*'
image1T2_regexp = '*1_T2*'
image2T1_regexp = '*2_T1.nii'
image2T1c_regexp = '*2_T1*C*'
image2T2_regexp = '*2_T2*'
label1_regexp = '*1-label.nii'
label2_regexp = '*2-label.nii'
image1T1 = [get_filenames(sub, image1T1_regexp) for sub in subdirs]
image1T1c = [get_filenames(sub, image1T1c_regexp) for sub in subdirs]
image1T2 = [get_filenames(sub, image1T2_regexp) for sub in subdirs]
image2T1 = [get_filenames(sub, image2T1_regexp) for sub in subdirs]
image2T1c = [get_filenames(sub, image2T1c_regexp) for sub in subdirs]
image2T2 = [get_filenames(sub, image2T2_regexp) for sub in subdirs]
label1 = [get_filenames(sub, label1_regexp) for sub in subdirs]
label2 = [get_filenames(sub, label2_regexp) for sub in subdirs]
# Get save names and ids
simage1T1, id = gen_savename(image1T1, save_base_path, save_type='_T1_1')
simage1T1c, _ = gen_savename(image1T1c, save_base_path, save_type='_T1c_1')
simage1T2, _ = gen_savename(image1T2, save_base_path, save_type='_T2_1')
simage2T1, _ = gen_savename(image2T1, save_base_path, save_type='_T1_2')
simage2T1c, _ = gen_savename(image2T1c, save_base_path, save_type='_T1c_2')
simage2T2, _ = gen_savename(image2T2, save_base_path, save_type='_T2_2')
slabel1, _ = gen_savename(label1, save_base_path, save_type='_mask_1')
slabel2, _ = gen_savename(label2, save_base_path, save_type='_mask_2')
# Rewrite to 16 bit
if regen:
print('Re-writing images as 16-bit')
rewrite_nifti(image1T1, simage1T1)
rewrite_nifti(image1T1c, simage1T1c)
rewrite_nifti(image1T2, simage1T2)
rewrite_nifti(image2T1, simage2T1)
rewrite_nifti(image2T1c, simage2T1c)
rewrite_nifti(image2T2, simage2T2)
rewrite_nifti(label1, slabel1)
rewrite_nifti(label2, slabel2)
# Dilate masks
if dilate and regen:
slabel1 = dilate_masks(slabel1, image1T2, dilate_kernel_size=dilate_rad, diff=diff_mask)
slabel2 = dilate_masks(slabel2, image2T2, dilate_kernel_size=dilate_rad, diff=diff_mask)
# Write CSV file
csv_file = os.path.join(save_base_path, 'radiomics_files_multi.csv')
write_csv(csv_file,
6 * id, simage1T1 + simage1T1c + simage1T2 + simage2T1 + simage2T1c + simage2T2,
3*slabel1 + 3*slabel2)
else:
raise ValueError('INVALID NUMBER OF CONTRASTS: Enter 1 or 3 contrasts')
return csv_file
def gen_images_csv_t1c(base_path, save_base_path, dilate, ncontrasts=1, regen=True, diff_mask=False):
"""
Compiles images to be processed into a csv for radiomic processing
TODO: add multi-contrast processing
Args:
base_path (str): path to the image base directories
save_base_path (str): path in which to save images
dilate (int): mask dilation radius, no dilation is performed if dilate=0
ncontrasts (int): the number of image contrasts to use, only 1 or 3 are allowed
regen (bool): whether or not to re-write image files and masks as uint16
Returns:
csv_file (str): path to the csv file containing images to be processed
"""
# Make sure save path exists
if not os.path.exists(save_base_path):
os.mkdir(save_base_path)
# Dilation setting for masks - UPDATE VALUES
if dilate == 0:
dilate = False
dilate_rad = 0
else:
dilate = True
dilate_rad = 10
# Get subdirs of the base paths
subdirs = get_foldernames(base_path, no_small=True)
# Get filenames
image1_regexp = '*1_T1*C*'
image2_regexp = '*2_T1*C*'
label1_regexp = '*1-label.nii'
label2_regexp = '*2-label.nii'
image1 = [get_filenames(sub, image1_regexp) for sub in subdirs]
image2 = [get_filenames(sub, image2_regexp) for sub in subdirs]
label1 = [get_filenames(sub, label1_regexp) for sub in subdirs]
label2 = [get_filenames(sub, label2_regexp) for sub in subdirs]
# Get save names and ids
simage1, id = gen_savename(image1, save_base_path, save_type='_T1C_1')
simage2, _ = gen_savename(image2, save_base_path, save_type='_T1C_2')
slabel1, _ = gen_savename(label1, save_base_path, save_type='_mask_1')
slabel2, _ = gen_savename(label2, save_base_path, save_type='_mask_2')
# Rewrite to 16 bit
if regen:
print('Re-writing images as 16-bit')
rewrite_nifti(image1, simage1)
rewrite_nifti(image2, simage2)
rewrite_nifti(label1, slabel1)
rewrite_nifti(label2, slabel2)
# Dilate masks
if dilate:
slabel1 = dilate_masks(slabel1, image1, dilate_kernel_size=dilate_rad, diff=diff_mask)
slabel2 = dilate_masks(slabel2, image2, dilate_kernel_size=dilate_rad, diff=diff_mask)
# Write CSV file
csv_file = os.path.join(save_base_path, 'radiomics_files.csv')
write_csv(csv_file, 2 * id, simage1 + simage2, slabel1 + slabel2)
return csv_file
if __name__ == "__main__":
# Dilation setting for masks - UPDATE VALUES
dilate = True
dilate_rad = 10
# Paths to base data (float format)
if sys.platform == 'linux':
base_path = '/media/matt/Seagate Expansion Drive/MR Data/MR_Images_Sarcoma'
save_base_path = '/media/matt/Seagate Expansion Drive/MR Data/MR_Images_Sarcoma/Radiomics_16bit'
else:
base_path = 'E:\\MR Data\\MR_Images_Sarcoma'
save_base_path = 'E:\\MR Data\\MR_Images_Sarcoma\\Radiomics_16bit'
# Get subdirs of the base paths
subdirs = get_foldernames(base_path, no_small=True)
# Get filenames
image1_regexp = '*1_T2*'
image2_regexp = '*2_T2*'
label1_regexp = '*1-label.nii'
label2_regexp = '*2-label.nii'
image1 = [get_filenames(sub, image1_regexp) for sub in subdirs]
image2 = [get_filenames(sub, image2_regexp) for sub in subdirs]
label1 = [get_filenames(sub, label1_regexp) for sub in subdirs]
label2 = [get_filenames(sub, label2_regexp) for sub in subdirs]
# Get save names and ids
simage1, id = gen_savename(image1, save_base_path, save_type='_T2_1')
simage2, _ = gen_savename(image2, save_base_path, save_type='_T2_2')
slabel1, _ = gen_savename(label1, save_base_path, save_type='_mask_1')
slabel2, _ = gen_savename(label2, save_base_path, save_type='_mask_2')
# Rewrite to 16 bit
rewrite_nifti(image1, simage1)
rewrite_nifti(image2, simage2)
rewrite_nifti(label1, slabel1)
rewrite_nifti(label2, slabel2)
# Dilate masks
if dilate:
slabel1 = dilate_masks(slabel1, image1, dilate_kernel_size=dilate_rad)
slabel2 = dilate_masks(slabel2, image2, dilate_kernel_size=dilate_rad)
# Write CSV file
csv_file = os.path.join(save_base_path, 'radiomics_files.csv')
write_csv(csv_file, 2*id, simage1 + simage2, slabel1 + slabel2)
# write_csv(csv_file, id[:2], simage1[:2], slabel1[:2])