Diff of /README.md [000000] .. [e44b03]

Switch to unified view

a b/README.md
1
# Hierarchical MRI tumor segmentation with densely connected 3D CNN
2
3
By Lele Chen, Yue Wu, [Adora M. DSouza](https://www.rochester.edu/college/gradstudies/profiles/adora-dsouza.html),Anas Z. Abidin, [Axel W. E. Wismuelle](https://www.urmc.rochester.edu/people/27063859-axel-w-e-wismueller), [Chenliang Xu](https://www.cs.rochester.edu/~cxu22/).
4
5
University of Rochester.
6
7
### Table of Contents
8
0. [Introduction](#introduction)
9
0. [Citation](#citation)
10
0. [Running](#running)
11
0. [Model](#model)
12
0. [Disclaimer and known issues](#disclaimer-and-known-issues)
13
0. [Results](#results)
14
15
### Introduction
16
17
This repository contains the original models (dense24, dense48, no-dense) described in the paper "Hierarchical MRI tumor segmentation with densely connected 3D CNN" (https://arxiv.org/abs/1802.02427). This code can be applied directly in [BTRAS2017](http://braintumorsegmentation.org/). 
18
19
![model](https://github.com/lelechen63/MRI-tumor-segmentation-Brats/blob/master/image/spie.gif)
20
21
22
### Citation
23
24
If you use these models or the ideas in your research, please cite:
25
    
26
    @inproceedings{DBLP:conf/miip/ChenWDAWX18,
27
      author    = {Lele Chen and
28
               Yue Wu and
29
               Adora M. DSouza and
30
               Anas Z. Abidin and
31
               Axel Wism{\"{u}}ller and
32
               Chenliang Xu},
33
      title     = {{MRI} tumor segmentation with densely connected 3D {CNN}},
34
      booktitle = {Medical Imaging 2018: Image Processing, Houston, Texas, United States,
35
               10-15 February 2018},
36
      pages     = {105741F},
37
      year      = {2018},
38
      crossref  = {DBLP:conf/miip/2018},
39
      url       = {https://doi.org/10.1117/12.2293394},
40
      doi       = {10.1117/12.2293394},
41
      timestamp = {Tue, 06 Mar 2018 10:50:01 +0100},
42
      biburl    = {https://dblp.org/rec/bib/conf/miip/ChenWDAWX18},
43
      bibsource = {dblp computer science bibliography, https://dblp.org}
44
    }
45
### Running
46
47
48
0. Pre-installation:[Tensorflow](https://www.tensorflow.org/install/),[Ants](https://github.com/ANTsX/ANTs),[nibabel](http://nipy.org/nibabel/),[sklearn](http://scikit-learn.org/stable/),[numpy](http://www.numpy.org/)
49
50
0. Download and unzip the training data from [BTRAS2017](http://braintumorsegmentation.org/)
51
52
0. Use N4ITK to correct the data: `python n4correction.py /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG`
53
0. Train the model:  `python train.py`
54
    - `-gpu`: gpu id
55
    - `-bs`: batch size 
56
    - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection'
57
    - `-nc`:  [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467),True or False
58
    - `-e`: epoch number 
59
    - `-r`: data path
60
    - `-sp`: save path/name
61
    - ...
62
63
For example:
64
`python train.py -bs 2 -gpu 0  -mn dense24 -nc True -sp dense48_correction -e 5  -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG`
65
66
0. Test the model: `python test.py`
67
    - `-gpu`: gpu id
68
    - `-m`: model path, the saved model name
69
    - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection'
70
    - `-nc`:  [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467), True or False
71
    - `-r`: data path
72
    - ...
73
74
For example:
75
`python test.py -m Dense24_correction-2 -mn dense24 -gpu 0 -nc True  -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG`
76
77
78
### Model
79
80
0. Hierarchical segmentation
81
    ![model](https://github.com/lelechen63/MRI-tumor-segmentation-Brats/blob/master/image/2.png)
82
83
    
84
0. 3D densely connected CNN
85
86
    ![model](https://github.com/lelechen63/MRI-tumor-segmentation-Brats/blob/master/image/1.png)
87
88
### Disclaimer and known issues
89
90
0. These codes are implmented in Tensorflow
91
0. In this paper, we only use the glioblastoma (HGG) dataset.
92
0. I didn't config nipype.interfaces.ants.segmentation. So if you need to use `n4correction.py` code, you need to copy it to the bin directory where antsRegistration etc are located. Then run `python n4correction.py`
93
0. If you want to train these models using this version of tensorflow without modifications, please notice that:
94
    - You need at lest 12 GB GPU memory.
95
    - There might be some other untested issues.
96
    
97
98
### Results
99
0. Result visualization :
100
    ![visualization](https://github.com/lelechen63/MRI-tumor-segmentation-Brats/blob/master/image/h.png)
101
    ![visualization](https://github.com/lelechen63/MRI-tumor-segmentation-Brats/blob/master/image/v.png)
102
103
0. Quantitative results:
104
105
    model|whole|peritumoral edema (ED)|FGD-enhan. tumor (ET)
106
    :---:|:---:|:---:|:---:
107
    Dense24 |0.74| 0.81| 0.80
108
    Dense48 | 0.61|0.78|0.79
109
    no-dense|0.61|0.77|0.78
110
    dense24+n4correction|0.72|0.83|0.81