--- a/README.md +++ b/README.md @@ -1,110 +1,110 @@ -# Hierarchical MRI tumor segmentation with densely connected 3D CNN - -By Lele Chen, Yue Wu, [Adora M. DSouza](https://www.rochester.edu/college/gradstudies/profiles/adora-dsouza.html),Anas Z. Abidin, [Axel W. E. Wismuelle](https://www.urmc.rochester.edu/people/27063859-axel-w-e-wismueller), [Chenliang Xu](https://www.cs.rochester.edu/~cxu22/). - -University of Rochester. - -### Table of Contents -0. [Introduction](#introduction) -0. [Citation](#citation) -0. [Running](#running) -0. [Model](#model) -0. [Disclaimer and known issues](#disclaimer-and-known-issues) -0. [Results](#results) - -### Introduction - -This repository contains the original models (dense24, dense48, no-dense) described in the paper "Hierarchical MRI tumor segmentation with densely connected 3D CNN" (https://arxiv.org/abs/1802.02427). This code can be applied directly in [BTRAS2017](http://braintumorsegmentation.org/). - - - - -### Citation - -If you use these models or the ideas in your research, please cite: - - @inproceedings{DBLP:conf/miip/ChenWDAWX18, - author = {Lele Chen and - Yue Wu and - Adora M. DSouza and - Anas Z. Abidin and - Axel Wism{\"{u}}ller and - Chenliang Xu}, - title = {{MRI} tumor segmentation with densely connected 3D {CNN}}, - booktitle = {Medical Imaging 2018: Image Processing, Houston, Texas, United States, - 10-15 February 2018}, - pages = {105741F}, - year = {2018}, - crossref = {DBLP:conf/miip/2018}, - url = {https://doi.org/10.1117/12.2293394}, - doi = {10.1117/12.2293394}, - timestamp = {Tue, 06 Mar 2018 10:50:01 +0100}, - biburl = {https://dblp.org/rec/bib/conf/miip/ChenWDAWX18}, - bibsource = {dblp computer science bibliography, https://dblp.org} - } -### Running - - -0. Pre-installation:[Tensorflow](https://www.tensorflow.org/install/),[Ants](https://github.com/ANTsX/ANTs),[nibabel](http://nipy.org/nibabel/),[sklearn](http://scikit-learn.org/stable/),[numpy](http://www.numpy.org/) - -0. Download and unzip the training data from [BTRAS2017](http://braintumorsegmentation.org/) - -0. Use N4ITK to correct the data: `python n4correction.py /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` -0. Train the model: `python train.py` - - `-gpu`: gpu id - - `-bs`: batch size - - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection' - - `-nc`: [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467),True or False - - `-e`: epoch number - - `-r`: data path - - `-sp`: save path/name - - ... - -For example: -`python train.py -bs 2 -gpu 0 -mn dense24 -nc True -sp dense48_correction -e 5 -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` - -0. Test the model: `python test.py` - - `-gpu`: gpu id - - `-m`: model path, the saved model name - - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection' - - `-nc`: [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467), True or False - - `-r`: data path - - ... - -For example: -`python test.py -m Dense24_correction-2 -mn dense24 -gpu 0 -nc True -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` - - -### Model - -0. Hierarchical segmentation -  - - -0. 3D densely connected CNN - -  - -### Disclaimer and known issues - -0. These codes are implmented in Tensorflow -0. In this paper, we only use the glioblastoma (HGG) dataset. -0. I didn't config nipype.interfaces.ants.segmentation. So if you need to use `n4correction.py` code, you need to copy it to the bin directory where antsRegistration etc are located. Then run `python n4correction.py` -0. If you want to train these models using this version of tensorflow without modifications, please notice that: - - You need at lest 12 GB GPU memory. - - There might be some other untested issues. - - -### Results -0. Result visualization : -  -  - -0. Quantitative results: - - model|whole|peritumoral edema (ED)|FGD-enhan. tumor (ET) - :---:|:---:|:---:|:---: - Dense24 |0.74| 0.81| 0.80 - Dense48 | 0.61|0.78|0.79 - no-dense|0.61|0.77|0.78 - dense24+n4correction|0.72|0.83|0.81 +# Hierarchical MRI tumor segmentation with densely connected 3D CNN + +By Lele Chen, Yue Wu, [Adora M. DSouza](https://www.rochester.edu/college/gradstudies/profiles/adora-dsouza.html),Anas Z. Abidin, [Axel W. E. Wismuelle](https://www.urmc.rochester.edu/people/27063859-axel-w-e-wismueller), [Chenliang Xu](https://www.cs.rochester.edu/~cxu22/). + +University of Rochester. + +### Table of Contents +0. [Introduction](#introduction) +0. [Citation](#citation) +0. [Running](#running) +0. [Model](#model) +0. [Disclaimer and known issues](#disclaimer-and-known-issues) +0. [Results](#results) + +### Introduction + +This repository contains the original models (dense24, dense48, no-dense) described in the paper "Hierarchical MRI tumor segmentation with densely connected 3D CNN" (https://arxiv.org/abs/1802.02427). This code can be applied directly in [BTRAS2017](http://braintumorsegmentation.org/). + + + + +### Citation + +If you use these models or the ideas in your research, please cite: + + @inproceedings{DBLP:conf/miip/ChenWDAWX18, + author = {Lele Chen and + Yue Wu and + Adora M. DSouza and + Anas Z. Abidin and + Axel Wism{\"{u}}ller and + Chenliang Xu}, + title = {{MRI} tumor segmentation with densely connected 3D {CNN}}, + booktitle = {Medical Imaging 2018: Image Processing, Houston, Texas, United States, + 10-15 February 2018}, + pages = {105741F}, + year = {2018}, + crossref = {DBLP:conf/miip/2018}, + url = {https://doi.org/10.1117/12.2293394}, + doi = {10.1117/12.2293394}, + timestamp = {Tue, 06 Mar 2018 10:50:01 +0100}, + biburl = {https://dblp.org/rec/bib/conf/miip/ChenWDAWX18}, + bibsource = {dblp computer science bibliography, https://dblp.org} + } +### Running + + +0. Pre-installation:[Tensorflow](https://www.tensorflow.org/install/),[Ants](https://github.com/ANTsX/ANTs),[nibabel](http://nipy.org/nibabel/),[sklearn](http://scikit-learn.org/stable/),[numpy](http://www.numpy.org/) + +0. Download and unzip the training data from [BTRAS2017](http://braintumorsegmentation.org/) + +0. Use N4ITK to correct the data: `python n4correction.py /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` +0. Train the model: `python train.py` + - `-gpu`: gpu id + - `-bs`: batch size + - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection' + - `-nc`: [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467),True or False + - `-e`: epoch number + - `-r`: data path + - `-sp`: save path/name + - ... + +For example: +`python train.py -bs 2 -gpu 0 -mn dense24 -nc True -sp dense48_correction -e 5 -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` + +0. Test the model: `python test.py` + - `-gpu`: gpu id + - `-m`: model path, the saved model name + - `-mn`: model name, 'dense24' or 'dense48' or 'no-dense' or 'dense24_nocorrection' + - `-nc`: [n4ITK bias correction](https://www.ncbi.nlm.nih.gov/pubmed/20378467), True or False + - `-r`: data path + - ... + +For example: +`python test.py -m Dense24_correction-2 -mn dense24 -gpu 0 -nc True -r /mnt/disk1/dat/lchen63/spie/Brats17TrainingData/HGG` + + +### Model + +0. Hierarchical segmentation +  + + +0. 3D densely connected CNN + +  + +### Disclaimer and known issues + +0. These codes are implmented in Tensorflow +0. In this paper, we only use the glioblastoma (HGG) dataset. +0. I didn't config nipype.interfaces.ants.segmentation. So if you need to use `n4correction.py` code, you need to copy it to the bin directory where antsRegistration etc are located. Then run `python n4correction.py` +0. If you want to train these models using this version of tensorflow without modifications, please notice that: + - You need at lest 12 GB GPU memory. + - There might be some other untested issues. + + +### Results +0. Result visualization : +  +  + +0. Quantitative results: + + model|whole|peritumoral edema (ED)|FGD-enhan. tumor (ET) + :---:|:---:|:---:|:---: + Dense24 |0.74| 0.81| 0.80 + Dense48 | 0.61|0.78|0.79 + no-dense|0.61|0.77|0.78 + dense24+n4correction|0.72|0.83|0.81