[6d4aaa]: / medseg_dl / model / evaluation.py

Download this file

171 lines (133 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import tensorflow as tf
import os
import logging
from medseg_dl.utils import utils_misc
import numpy as np
import datetime
def sess_eval(spec_pipeline, spec_pipeline_metrics, spec_model, params, filenames_eval=''):
# Add an op to initialize the variables
init_op_vars = tf.global_variables_initializer()
# Add ops to save and restore all variables
saver_best = tf.train.Saver(max_to_keep=1) # only keep best checkpoint
# generate summary writer
writer = tf.summary.FileWriter(params.dict['dir_logs_eval'])
logging.info(f'saving log to {params.dict["dir_logs_eval"]}')
# Define fetched variables
fetched_eval = {'agg_probs': spec_model['agg_probs'],
'recombined_probs_op': spec_model['recombined_probs_op']}
fetched_metrics_op = {'recombined_probs': spec_model['recombined_probs_value'],
'update_metrics_op_eval': spec_model['update_op_metrics']}
fetched_metrics_eval = {'metrics': spec_model['metrics_values'],
'summary_metrics': spec_model['summary_op_metrics']}
if params.dict['b_viewer_eval']:
fetched_metrics_op.update({'images': spec_pipeline_metrics['images'],
'labels': spec_pipeline_metrics['labels']}) # 'probs': spec_model['probs']})
# set growth option
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
_ = tf.summary.FileWriter(params.dict['dir_graphs_eval'], sess.graph)
logging.info(f'Graph saved in {params.dict["dir_graphs_eval"]}')
sess.run(init_op_vars) # init global variables
best_eval_acc = 0
if params.dict['b_continuous_eval']:
# Run evaluation when there"s a new checkpoint
logging.info(f'Continuous evaluation of {params.dict["dir_ckpts"]}')
for ckpt in tf.contrib.training.checkpoints_iterator(params.dict['dir_ckpts'],
min_interval_secs=30,
timeout=3600,
timeout_fn=timeout_fn):
logging.info('Processing new checkpoint')
try:
results, epoch = eval_epoch(sess=sess,
ckpt=ckpt,
saver=saver_best,
spec_pipeline=spec_pipeline,
spec_pipeline_metrics=spec_pipeline_metrics,
spec_model=spec_model,
fetched_eval=fetched_eval,
fetched_metrics_op=fetched_metrics_op,
fetched_metrics_eval=fetched_metrics_eval,
writer=writer,
params=params,
filenames=filenames_eval)
# If best_eval, best_save_path
eval_acc = results['metrics']['mean_iou']
if eval_acc >= best_eval_acc:
# Store new best accuracy
logging.info(f'Found new best metric, new: {eval_acc}, old: {best_eval_acc}')
best_eval_acc = eval_acc
# Save weights
save_path = saver_best.save(sess,
os.path.join(params.dict['dir_ckpts_best'], 'model.ckpt'),
global_step=epoch)
logging.info(f'Best model saved in {save_path}')
# Save best eval metrics in a json file in the model directory
metrics_path_best = os.path.join(params.dict['dir_model'], "metrics_eval_best.yaml")
utils_misc.save_dict_to_yaml(results['metrics'], metrics_path_best)
# check if max amount of checkpoints is reached
if epoch >= params.dict['num_epochs']:
tf.logging.info(f'Evaluation finished after epoch {epoch}')
break
except tf.errors.NotFoundError: # Note: this is sometimes reached if training has already finished
logging.info(f'Checkpoint {ckpt} no longer exists, skipping checkpoint')
else:
# Run evaluation on most recent checkpoint
logging.info(f'Single evaluation of {params.dict["dir_ckpts"]}')
ckpt = tf.train.latest_checkpoint(params.dict['dir_ckpts'])
_, _ = eval_epoch(sess=sess,
ckpt=ckpt,
saver=saver_best,
spec_pipeline=spec_pipeline,
spec_pipeline_metrics=spec_pipeline_metrics,
spec_model=spec_model,
fetched_eval=fetched_eval,
fetched_metrics_op=fetched_metrics_op,
fetched_metrics_eval=fetched_metrics_eval,
writer=writer,
params=params,
filenames=filenames_eval)
def eval_epoch(sess, ckpt, saver, spec_pipeline, spec_pipeline_metrics, spec_model, fetched_eval, fetched_metrics_op, fetched_metrics_eval, writer, params, filenames=''):
epoch = int(os.path.basename(ckpt).split('-')[1])
logging.info(f'Epoch {epoch}: evaluation')
saver.restore(sess, ckpt)
logging.info(f'Epoch {epoch}: restored checkpoint')
sess.run(spec_model['init_op_metrics']) # reset metrics
# process all eval batches per evaluation subject
for idx_subject in range(len(filenames[0][0])):
logging.info(f'Processing subject {idx_subject}/{len(filenames[0][0])}')
# initialize dataset for patches
sess.run(spec_pipeline['init_op_iter'], feed_dict={spec_pipeline['idx_selection']: idx_subject})
sess.run(spec_model['agg_probs_init_op']) # initialize aggregated probs tensor and batch count
# aggregate patches
results = None
while True:
try:
results = sess.run(fetched_eval)
except tf.errors.OutOfRangeError:
break
logging.info(f'Epoch {epoch}: fetching metrics')
# initialize dataset for metric calculation (i.e. no patches)
sess.run(spec_pipeline_metrics['init_op_iter'], feed_dict={spec_pipeline_metrics['idx_selection']: idx_subject})
results_op = sess.run(fetched_metrics_op)
# save prediction
if params.dict['b_save_pred']:
now = datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
path_save = '/home/d1280/no_backup/d1280/results'
subject_name = os.path.basename(os.path.dirname(os.path.normpath(filenames[0][0][idx_subject])))
np.save(os.path.join(path_save, str(params.dict['idx_dataset']), subject_name + '_' + now + '_images'), results_op['images'])
np.save(os.path.join(path_save, str(params.dict['idx_dataset']), subject_name + '_' + now + '_labels'), results_op['labels'])
np.save(os.path.join(path_save, str(params.dict['idx_dataset']), subject_name + '_' + now + '_preds'), results_op['recombined_probs'])
# allow viewing of data
if params.dict['b_viewer_eval']:
utils_misc.show_results(results_op['images'][0, ...], results_op['labels'][0, ...], results_op['recombined_probs'][0, ...])
results_metrics = sess.run(fetched_metrics_eval)
logging.info(f'Epoch {epoch}: fetched metrics: {results_metrics["metrics"]}')
writer.add_summary(results_metrics['summary_metrics'], global_step=epoch)
# Save latest eval metrics in a json file in the model directory
metrics_path_last = os.path.join(params.dict['dir_model'], "metrics_eval_last.yaml")
utils_misc.save_dict_to_yaml(results_metrics['metrics'], metrics_path_last)
return results_metrics, epoch
def timeout_fn():
logging.info('No new checkpoint: assuming training has ended')
return True