--- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ - Over 3400 labeled MRI images from thousands patients - Over 500 MRI images for evaluation -<img src="imgs/overview.png" width="30%"> +<img src="https://github.com/JiaPeng1234/MRI-Segmentation-Transformer/blob/master/imgs/overview.png?raw=true" width="30%"> Used network architectures including 3d u-net, non-local neural network, attention u-net are proposed. @@ -39,16 +39,16 @@ Its architecture as following: -<img src="imgs/non-local.PNG" width="70%"> +<img src="https://github.com/JiaPeng1234/MRI-Segmentation-Transformer/blob/master/imgs/non-local.PNG?raw=true" width="70%"> ### 3d U-net as baseline Baseline architecture is a 4-stages 3d u-net, as following: -<img src="imgs/u-net.PNG" width="70%"> +<img src="https://github.com/JiaPeng1234/MRI-Segmentation-Transformer/blob/master/imgs/u-net.PNG?raw=true" width="70%"> ## Results Achieve an average accurancy of 97% of all classes. -<img src="imgs/results1.png" width="60%"> +<img src="https://github.com/JiaPeng1234/MRI-Segmentation-Transformer/blob/master/imgs/results1.png?raw=true" width="60%"> -<img src="imgs/exp001shape.PNG" width="50%"> +<img src="https://github.com/JiaPeng1234/MRI-Segmentation-Transformer/blob/master/imgs/exp001shape.PNG?raw=true" width="50%">